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2015



Contents

Abstract v

Dedication vi

Acknowledgments vii

1 Introduction 1
1.1 Dynamics of Lagrangian Correspondences . . . . . . . . . . . . . . . 1
1.2 Contact Dynamics and Resonance Relations . . . . . . . . . . . . . . 5

2 Conley Conjecture for Lagrangian Correspondences 11
2.1 Basic Definitions and Main Theorem . . . . . . . . . . . . . . . . . . 11
2.2 Linear Algebra of Lagrangian Correspondences . . . . . . . . . . . . 14

2.2.1 Decomposing Linear Lagrangian Correspondences . . . . . . 14
2.2.2 Mean Index for Paths of Lagrangian Correspondences . . . . 17
2.2.3 Grading for Linear Lagrangian Correspondences and Index for

Graded Linear Lagrangian Correspondences . . . . . . . . . . 24
2.3 Bounding The Gap Between Mean and Iterated Index . . . . . . . . 34
2.4 Lagrangian Floer Homology and Homology of Iterated Lagrangian

Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Proof of Theorem 2.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Resonance Relations for Closed Reeb Orbits 40
3.1 Iterated index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Iterated index of a map . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Iterated index of a germ . . . . . . . . . . . . . . . . . . . . . 46

3.2 Mean Euler characteristic . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.1 Notation and conventions . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 Local formula for the MEC . . . . . . . . . . . . . . . . . . . 56
3.2.4 Preliminaries and the proof . . . . . . . . . . . . . . . . . . . 58
3.2.5 Asymptotic Morse inequalities . . . . . . . . . . . . . . . . . 68

iii



3.3 Closed Reeb orbits on S3 . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography 79

iv



Abstract

Counting Periodic Orbits:

Conley Conjecture for Lagrangian Correspondences and Resonance Relations

for Closed Reeb Orbits

by

Yusuf Gören

The thesis is centered around the theme of periodic orbits of Hamiltonian systems.

More precisely, we prove that on a closed symplectic Calabi–Yau manifold every La-

grangian correspondence Hamiltonian isotopic to the diagonal and satisfying some

non-degeneracy condition has infinitely many periodic orbits, and we give a new

proof of the theorem that every contact form supporting the standard contact struc-

ture on S3 has at least two periodic Reeb orbits. The former result is obtained by

considering the intersection Lagrangian Floer homology of suitable Lagrangians and

estimating index growth for iterations, while the latter relies on a new homotopy

invariant index which is in turn used to prove a new variant of the resonance relation

for Reeb flows.
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Chapter 1

Introduction

In the realm of Hamiltonian systems, periodic orbits are considered to be

among the most important objects of study. From celestial mechanics to electro-

dynamics, they model a variety of key phenomena in the physical world. Since the

Hamiltonian dynamics had sprung out of the phase space description of physical

problems, it is essential to consider Hamiltonians on a symplectic manifold and in-

vestigate the existence of their periodic orbits. Similarly, one can consider closed

characteristics of a Hamiltonian on a closed energy surface, which gives rise to the

existence problem for periodic Reeb orbits in contact manifolds. This thesis, in

different chapters, is concerned with periodic orbits in these two separate settings.

1.1 Dynamics of Lagrangian Correspondences

The following is among the most prominent questions in symplectic ge-

ometry and Hamiltonian dynamics: Given a (time-dependent) Hamiltonian H :
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M × R → R on a closed symplectic manifold (M,ω), how many simple periodic

orbits of all periods, if any, does its time-one map ϕ have? Such time-one maps

are called Hamiltonian diffeomorphisms. While the existence part of this question

is essentially answered affirmatively by the proof of the Arnold conjecture (see [54]

and the references therein for a detailed discussion), the quantitative part of the

problem (in a form of which we are interested in Chapter 2) is frequently referred

as the Conley conjecture, which can be stated as follows:

Given a (time-dependent) Hamiltonian H : M × R → R on a

symplectic manifold (M,ω) that satisfies some natural condi-

tions, the time-one map ϕ has infinitely many simple periodic

orbits.

(CC)

Here, we call a k-periodic orbit (ϕi(x))i∈Z/kZ simple if all ϕi(x) are distinct. With-

out any assumption on M , (CC) does not hold true: the rotation of the 2-sphere

by an irrational angle has only two fixed points and no other simple periodic orbits.

Nevertheless, the Conley conjecture is mostly true: For instance it holds for sym-

plectic Calabi-Yau manifolds (i.e. c1(TM) = 0), surfaces, tori, negative monotone

symplectic manifolds, etc. We refer the reader to [62, 17, 36, 25, 23, 34, 35] for

various cases and [27] for a survey of recent results.

We are interested in a generalization of the Conley conjecture to La-

grangian correspondences. To briefly describe it here, we need to recall an impor-

tant observation about symplectomorphisms made by Alan Weinstein in his seminal

work [75]. Namely, for a symplectomorphism φ : (M,ωM )→ (N,ωN ), its graph

Gr(φ) ⊂M−×N is a Lagrangian submanifold with respect to the symplectic struc-
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ture (−ωM ) ⊕ ωN . Therefore Lagrangian submanifolds of M− × N are considered

to be relations with additional structure, or, in other words, some generalization of

symplectomorphisms. Such relations are called Lagrangian correspondences. Inher-

ently, a Lagrangian correspondence L ⊂ M− ×M , more conveniently denoted as

M
L−→M , gives rise to a “dynamics” onM given by x

L7→ y whenever (x, y) ∈ L. Since

the domain and the codomain of L are both M , it is possible to define a (simple)

periodic orbit as a sequence (xi)i∈Z/kZ , where (xi, xi+1) ∈ L for all i (all xi distinct).

Coming back to (CC), note that for a Hamiltonian diffeomorphism ϕ : M →M , its

graph Gr(ϕ) gives rise to a Lagrangian correspondence L = Gr(ϕ) whose periodic

orbits coincide with the periodic orbits of the Hamiltonian diffeomorphism. More-

over, the relation L is Hamiltonian isotopic to the diagonal ∆ = {(x, x)
∣∣ x ∈ M}.

Therefore, we can forget where L came from and just assume that we have a La-

grangian submanifold L ⊂M−×M Hamiltonian isotopic to the diagonal. Thus one

can formulate the following generalization of Conley conjecture:

Given a Lagrangian correspondence L ⊂ M− × M Hamilto-

nian isotopic to the diagonal, where M satisfies some natural

conditions, L has infinitely many simple periodic orbits.

(CCLC)

The expectation is, therefore, that this conjecture holds true in the cases of (CC)

listed above. Chapter 2 is dedicated to proving (CCLC) assuming that M is sym-

plectic Calabi–Yau and L is, in a certain sense, weakly non-degenerate (see Def-

inition 2.1.3 and Theorem 2.1.4 for details). Drawing a parallel with the Conley

conjecture (for Hamiltonian diffeomorphisms), we can say that our result roughly

corresponds to the case of (CC) proved by Salamon and Zehnder in [62].
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To describe our approach used in the proof, let us consider the intersection

Lagrangian Floer homology HF (L, k) := HF (Lk, Dk) for Lk = L × · · · × L and

Dk = (∆×· · ·×∆)T , where both products are k-fold and ·T denotes the transposition

of the last factor to the first. Notice that the intersection points of these two

Lagrangians are (not necessarily simple) k-periodic points. We then proceed by

analyzing the growth of the index of a fixed point under iterations. Combined with

an isomorphism HF∗(L, k) = H∗+n(M) (Theorem 2.4.2), the behavior of the index

forces the correspondence to have infinitely many periodic orbits. This approach is

similar to [62]; however, we employ a different version of “Maslov index theory” to

compute indices of Lagrangian paths.

One important comment about the iterations is now due. The kth iteration

of a Hamiltonian diffeomorphism ϕ is simply the k-fold composition of ϕ with itself.

Therefore, an iteration of a Hamiltonian diffeomorphism, or more precisely its graph,

becomes a Lagrangian correspondence from M to itself. Also, the k-periodic points

constitute precisely the intersection set Gr(ϕk)∩∆. However, for general Lagrangian

correspondences M
L−→ N

K−→ Q, the set K ◦ L := {(x, z) ∈ M− × Q
∣∣ ∃y ∈

N, (x, y) ∈ L and (y, z) ∈ K} might not even be a smooth submanifold, and hence

not necessarily a Lagrangian correspondence. Nevertheless, the k-periodic points of

M
L−→M are realized as the intersection set of two Lagrangians; more precisely, they

are in one-to-one correspondence with Lk ∩ Dk. This set belongs to (M− ×M)k,

and both Lk and Dk are obviously smooth. Thus, in our approach, we bypass the

smoothness problem in “composition of Lagrangian correspondences” (see [75, 74]
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for a detailed discussion about compositions) by considering the products mentioned

above. Moreover Lk ∩ Dk is in one-to-one correspondence with the set L◦k :=

L ◦ · · · ◦ L (even if it is not a smooth submanifold), which makes our choice of

Lagrangians more prevalent. Also, notice that even if the compositions are smooth

(e.g. L = Gr(ϕ)), computing the intersection Floer homology for arbitrary k and

analyzing index growth are much more harder than they are in our approach.

1.2 Contact Dynamics and Resonance Relations

Another aspect of Hamiltonian dynamics we consider here concerns Reeb

flows on contact manifolds. For completeness we shall revisit the basics of contact

geometry now. A contact structure ξ is a maximally non-integrable hyperplane

distribution on M . A contact form α for a coorientable distribution ξ is a 1-form

such that kerα = ξ. The non-integrability condition translates as α ∧ (dα)n−1 6= 0

where dimM = 2n − 1. The vector field R satisfying ιR dα = 0 and α(R) = 1 is

called the Reeb vector field for the contact form α and its integrals Reeb orbits (cf.

[21] for a detailed introduction to contact geometry). Many interesting autonomous

Hamiltonian flows (e.g. geodesic flows) are Reeb flows.

Notice that the linearized Poincaré return map restricted to ξ of a Reeb

flow around a periodic orbit is symplectic, and thus has its mean index defined.

When the number of closed Reeb orbits is finite, these mean indices must satisfy

certain resonance relation. These relations for the standard contact sphere were

found in [70], and later extended to non-degenerate Reeb flows for a broader class
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on contact manifolds in [29]. One of the main goals of Chapter 3 is to remove the

non-degeneracy condition. We do this in several steps. To begin with, in Section 3.1,

we prove an elementary formula relating the number of periodic orbits of an iter-

ated map and the Lefschetz numbers of the iterations. We also establish a local

version of this formula (see Section 3.1.2) which connects the number of periodic

orbits, suitably defined, of a germ at an isolated fixed point and the indices of its

iterations. The latter result is then used to express the mean Euler characteristic

(MEC) discussed below, of a contact manifold with finitely many simple closed Reeb

orbits in terms of local, purely topological, invariants of closed Reeb orbits, when

the orbits are not required to be non-degenerate (see Section 3.2). This is the de-

generate version of the resonance relations mentioned above. Finally, this relation is

utilized to reprove a theorem asserting the existence of at least two Reeb orbits on

the standard S3 (see [11, 28, 50]) and the existence of at least two closed geodesics

for a Finsler metric, not necessarily symmetric, on S2 (see [2, 11]).

To describe our approach, let us consider first a smooth map F : M →M ,

where M is a closed manifold. We show that the number Iκ(F ) of κ-periodic orbits

of F , once the orbits of a certain type are discounted, can be expressed via the

Lefschetz numbers of the iterations F d for d|κ (see Theorem 3.1.2), and hence Iκ(F )

is homotopy invariant. In a similar vein, given a germ of a smooth map at a fixed

point x, isolated for all iterations, one can associate to it a certain invariant Iκ(F ),

an iterated index, which counts κ-periodic orbits of a small perturbation of F near x,

with again some orbits being discounted. The iterated index can also be expressed
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via the indices of the iterations F d for d|κ (see Theorem 3.1.4), and hence Iκ(F )

is again a homotopy invariant of F as long as x remains uniformly isolated for F κ.

We further investigate the properties of the iterated index in Section 3.1, which is

essentially independent of the remainder of the chapter. The results in this section,

although rather elementary, are new to the best of our knowledge; see however [10].

Next, we apply the iterated index to calculation of the mean Euler charac-

teristic (MEC) of contact manifolds. The MEC of a contact manifold, an invariant

introduced in [69] (cf. [59]), is the mean alternating sum of the dimensions of con-

tact homology. It was observed in [29] that when a Reeb flow has finitely many

simple periodic orbits and these orbits are totally non-degenerate, the MEC can be

expressed via certain local invariants of the closed orbits, computable in terms of

the linearized flow. (Here an orbit is called totally non-degenerate if all its iterations

are non-degenerate.) This expression for the MEC generalizes resonance relations

for the mean indices of the closed Reeb orbits on the sphere, proved in [70], and is

further generalized to certain cases where there are infinitely many orbits in [15],

including the Morse-Bott setting. The results of this type have been used for calcu-

lations of the MEC (see, e.g., [15]) and also in applications to dynamics; [29, 25, 59].

It is this latter aspect of the MEC formula that we are interested in here.

Versions of the MEC formula where the Reeb orbits are allowed to degen-

erate are established in [41, 51] with applications to dynamics in mind. In these

formulas, however, the contributions of closed orbits are expressed in terms of cer-

tain local homology groups associated with the orbits and are contact-geometrical
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in nature. Here, in Theorem 3.2.2, we extend the result from [29] to the degenerate

case with the orbit contributions computable via the linearized flow and a certain

purely topological invariant of the Poincaré return map. The latter invariant is

essentially the mean iterated index.

Two remarks concerning this result are due now. Firstly, in all known

examples of Reeb flows, if there are finitely many periodic orbits, then they are

totally non-degenerate. Thus the degenerate case of the local MEC formula (The-

orem 3.2.2) appears to be of little interest for the MEC calculations for specific

manifolds. However, it does have applications to dynamics. For instance, it allows

one to rule out certain orbit patterns and, as a consequence, obtain lower bounds

on the number of closed orbits (cf. [41, 50, 72]); see Section 3.3 and a discussion

below. Secondly, our local MEC formula is identical to the one established in [41]

and also, apparently, to the one proved for the sphere in [51]. The difference lies

in the interpretation or the definition of the terms in the formula. Although our

local MEC formula could be directly derived from [41, Theorem 1.5] (see Remark

3.2.6), we give, for the sake of completeness, a rather short proof of the formula,

still relying, however, on some of the results from [41]; cf. [28]. In Section 3.2, we

also discuss in detail the definition of the MEC, examples, the local and filtered

contact homology and other ingredients of the proof of Theorem 3.2.2, and state a

variant of the asymptotic Morse inequalities for contact homology (Theorem 3.2.7)

generalizing some results from [29, 41].

Finally, in the last section, we turn to applications of Theorem 3.2.2. We
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prove in a novel way that every Reeb flow on the standard contact S3 has at least two

closed Reeb orbits; see [11, 28, 50]1. The proofs in [28, 50] both rely on an analogue

of the “degenerate case of the Conley conjecture” for contact forms, asserting that

the presence of one closed Reeb orbit of a particular type (a so-called symplectically

degenerate minimum) implies the existence of infinitely many closed Reeb orbits.

This result holds in all dimensions; see [28]. Another non-trivial (and strictly three-

dimensional) ingredient in the argument in [28] comes from the theory of finite

energy foliations (see [37, 38]), while the argument in [50] uses, also in a non-trivial

way, the variant of the local MEC formula from [51] for degenerate Reeb flows on the

standard contact sphere. In this paper, we bypass the results from the theory of finite

energy foliations and give a very simple proof of Theorem 3.3.1 utilizing Theorem

3.2.2 and the “Conley conjecture” type result mentioned above. The advantage of

this approach is that it minimizes the 3-dimensional counterparts of the proof and,

we hope, is the first step towards higher-dimensional results. We also reprove, in

slightly more general form, a theorem from [2] that every Finsler metric on S2 has

at least two closed geodesics (Clearly, this also follows from [11]).

A word is due on the degree of rigor in Chapter 3, which varies considerably

between its different parts. Section 3.1, dealing with the iterated index, is of course

completely rigorous. The rest however, just as [28], heavily relies on the machinery

of contact homology (see, e.g., [6, 13] and references therein), which is yet to be

fully put on a rigorous basis (see [39, 40]). Note however that, to get around the

1In fact, a more general result is now known to be true. Namely, the assertion holds for any con-
tact three-manifold. This fact, proved in [11] using the machinery of embedded contact homology,
is out of reach of the methods presented here.
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foundational difficulties, one can replace here, following, e.g., [9, 19], the linearized

contact homology by the equivariant symplectic homology, which carries essentially

the same information (see [8]), at the expense of proofs getting somewhat more

involved; cf. Remarks 3.2.1 and 3.2.9, and [41] vs. [55] or [15] vs. [19].
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Chapter 2

Conley Conjecture for

Lagrangian Correspondences

2.1 Basic Definitions and Main Theorem

Given a symplectomorphism M
φ−→M , its graph

Gr(φ) :=
{

(x, φ(x)) ∈M ×M
∣∣ x ∈M}

is a Lagrangian submanifold in M− ×M := (M ×M, ((−ω)⊕ ω)). Therefore, fol-

lowing [76], we shall consider a Lagrangian submanifold L in M−×M as a relation

on M , and denote it by M
L−→M ; i.e. for x, y ∈M , x

L7→ y if and only if (x, y) ∈ L.

Such a relation is called a Lagrangian correspondence on M . Notice that in general,

a Lagrangian correspondence, considered as a relation, may fail to be the graph of

a function. Nevertheless, one can still make sense of its periodic orbits as follows.

Definition 2.1.1. A k-periodic orbit of a Lagrangian correspondence M
L−→ M is
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a sequence of points {xi}i∈Zk ⊂ M such that (xi, xi+1) ∈ L for all i ∈ Zk. Such an

orbit is said to be simple if xi 6= xj for all i, j ∈ Zk, i 6= j.

Remark 2.1.2. The fixed points of the correspondence L constitute simply L ∩∆M

where ∆M := {(x, x)
∣∣ x ∈ M} (notation-wise, if the context is clear, we usu-

ally omit the subscript M). Also, one can obtain the k-periodic orbits of a La-

grangian correspondence as the intersection of two Lagrangians as follows. Let

W = M− × M and ·T : W k → W k be given by transposition of the last factor

to the first. More precisely, the transposition is given by (x1, y1, . . . , xk, yk)
T =

(yk, x1, y1, . . . , xk−1, yk−1, xk), for xi, yi ∈ M for i = 1, . . . , k. This map is anti-

symplectic. Therefore it is symplectic as a map from W k to (W k)−. Also let the

twisted multi-diagonal Dk := ((∆M )k)T be the transpose of the k-fold product of

the diagonal and Lk = L× · · · ×L denote the k-fold product of the Lagrangian cor-

respondence. It is rather straightforward to see that the k-periodic orbits {xi}i∈Zk

of L are in one-to-one correspondence with the intersection points ((xi, xi+1))i∈Zk

of Lk with Dk.

As pointed out in Section 1.1, we need further restrictions to the class

of correspondences for which (CC) generalizes to (CCLC). Firstly, to draw paral-

lel to the fact that the main object in (CC), i.e. ϕ, is a Hamiltonian diffeomor-

phism (rather than simply a symplectomorphism), we assume that the Lagrangian

correspondence is Hamiltonian isotopic to the diagonal. To introduce the next as-

sumption, we need to recall some definitions from [53]. The projection of a linear

Lagrangian correspondence Λ ⊂ V − × V to the first and the second component are
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called the domain and the range of Λ respectively, and their symplectic complements

the kernel and the halo of Λ respectively.

Definition 2.1.3. A linear Lagrangian Λ ⊂ V −×V is called weakly non-degenerate

if its halo and domain (or equivalently its kernel and range) are transverse and the

linear symplectic map has at least one eigenvalue not equal to 1 when the halo (or

equivalently the kernel) is empty. A Lagrangian correspondence M
L−→M is weakly

non-degenerate if for every x ∈ L ∩∆M , TxL is weakly non-degenerate.

The dimension of the intersection of the halo and the image turns out to

be an invariant, which can be used to classify Lagrangian correspondences, cf. [53].

To give a plethora of (linear) examples, consider a linear symplectic map φ ∈ Sp(V1)

and a pair of transverse linear Lagrangians λ1, λ2 ∈ Lag(V2), and, for V = V1 ⊕ V2,

the linear Lagrangian correspondence L = Gr(φ)⊕ (λ1× λ2) ∈ Lag(V −× V ). Then

the halo of L is λ2, and its domain V1⊕(λ1), which makes L weakly non-degenerate.

Moreover, one can take V2 = {0} while ensuring the linear map to have at least one

eigenvalue not equal to 1 for more examples. Following the same logic, we note

that the graphs of weakly non-degenerate Hamiltonian diffeomorphisms are weakly

non-degenerate Lagrangian correspondences since the kernel at every point is empty

and the linear mapping is weakly non-degenerate. Therefore, this generalizes the

weakly non-degeneracy in [62] to a suitable class of Lagrangian correspondences.

Now, we are ready to state the main theorem.

Theorem 2.1.4. Let M
L−→ M be a weakly non-degenerate Lagrangian correspon-

dence of a closed symplectic Calabi–Yau manifold M (c1(TM) = 0) such that L is

13



Hamiltonian isotopic to ∆M . Then for any sufficiently large prime k, there exists a

simple k-periodic orbit.

For the case L = Gr(φ) where φ is a Hamiltonian diffeomorphism, we

recover the Conley conjecture for weakly non-degenerate case (cf. [62]). As in the

Hamiltonian diffeomorphism case, the requirement c1(TM) = 0 is essential, e.g.

for M = S2 and φ the Hamiltonian diffeomorphism corresponding to an irrational

rotation about an axis, there are no periodic points other than two fixed points.

Likewise, the requirement that L is Hamiltonian isotopic to the diagonal is also

essential since e.g. for T2, the Lagrangian correspondence L = Gr(φ), where φ is a

symplectic irrational translation, has no periodic orbits. Also as a counterexample

in a more general setting, one can consider L = l1× l2 for Lagrangian submanifolds

li of M such that l1 ∩ l2 = ∅, in which case there are neither any fixed points nor

any periodic points.

2.2 Linear Algebra of Lagrangian Correspondences

2.2.1 Decomposing Linear Lagrangian Correspondences

We shall investigate in depth linear Lagrangians Λ ⊂ V − × V . Recall

that (V, ω) is symplectic and the symplectic structure Ω in V − × V is given by

Ω = (−ω)⊕ ω. The space V − called the dual of V , is simply V with the symplectic

structure−ω. Also let π1, π2 be projections onto the first and the second components
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respectively, and

dom(Λ) = {v ∈ V
∣∣ ∃w ∈ V, (v, w) ∈ Λ} = π1(Λ)

ran(Λ) = {w ∈ V
∣∣ ∃v ∈ V, (v, w) ∈ Λ} = π2(Λ)

ker(Λ) = {v ∈ V
∣∣ (v, 0) ∈ Λ} = π1(Λ)⊥

halo(Λ) = {w ∈ V
∣∣ (0, w) ∈ Λ} = π2(Λ)⊥

where the last one is called the halo of Λ and C⊥ denotes the symplectic complement

of C. The notation introduced above is standard for linear relations, see [67], whereas

the name ‘halo’ is introduced in [53]. The final equalities for the kernel and the halo

are exclusive for a linear Lagrangian Λ. Now, the following theorem establishes how

much variation can be expected within a special class of linear Lagrangians.

Theorem 2.2.1. For Λ ⊂ V − × V , assume that the halo and the domain are

transverse. Then we have a symplectic decomposition V = Vg ⊕ Vp such that

Λ = Gr(ϕ)⊕ (λ1 × λ2) (2.1)

where φ is a symplectic linear map of Vg and λ1, λ2 are transverse Lagrangians in

Vp.

Proof. Let C1 = dom(Λ) and C2 = ran(Λ). Notice that C1, C2 are coisotropic: if

v1 ∈ C⊥1 , then (v1, 0) ∈ L⊥ = L since for every (v, w) ∈ L

Ω
(
(v1, 0), (v, w)

)
= −ω(v1, v) + ω(0, w) = 0

where the last equality follows from the fact that v1 ∈ C⊥1 and v ∈ C1 by definition.

Therefore v1 ∈ C1. Similarly, one can show that if w1 ∈ C⊥2 , then (0, w1) ∈ L and
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hence w1 ∈ C2. Now, consider

ϕ̃ : C1 → C2

/
C⊥2

v 7→ [w] where (v, w) ∈ L

This map is well-defined: If (v, w), (v, w′) ∈ L then (0, w−w′) ∈ L and for arbitrary

(ṽ, w̃) ∈ L, we have 0 = Ω
(
(0, w − w′), (ṽ, w̃)

)
= −ω(0, ṽ) + ω(w − w′, w̃) = ω(w −

w′, w̃), which implies that w − w′ ∈ C⊥2 and hence [w] = [w′]. Moreover,

ker ϕ̃ = {v ∈ C1

∣∣ [w] = 0}

= {v ∈ C1

∣∣ (v, w) ∈ L and w ∈ C⊥2 }

= {v ∈ C1

∣∣ ∀(ṽ, w̃) ∈ L, ω(v, ṽ) = 0}

= C⊥1

where the penultimate equality follows from 0 = Ω
(
(ṽ, w̃), (v, w)

)
= −ω(ṽ, v) +

ω(w̃, w) = −ω(ṽ, v). Therefore the quotient map ϕ : C1/C
⊥
1 → C2/C

⊥
2 is an isomor-

phism of symplectic subspaces of the same linear subspace. This is ensured by the

assumption that C1 ∩C⊥2 = {0}. Calling this subspace Vg, we get the graph part in

the decomposition.

To understand the product of Lagrangians appearing in the decomposition,

assume without loss of generality that Vg = {0}. Then, C1, C2 are Lagrangian, and

since L ⊆ C1×C2 by definition, L = C1×C2 follows. Moreover they are transverse

since {0} = C1 ∩ C⊥2 = C1 ∩ C2.

Remark 2.2.2. The theorem is false without the transversality condition. Consider

Λ = {(0, x, y, z, y, z, 0, t)
∣∣ x, y, z, t ∈ R} as a Lagrangian linear relation R4 Λ−→ R4.

The halo and the kernel intersect non-transversally and there is no decomposition

16



since the only part that looks like a graph is from the second pair of the first 4-tuple

to the first pair of the second 4-tuple. Moreover, following [53], the dimension of

halo(Λ)∩dom(Λ) is an invariant of the linear relation encoding symplectic informa-

tion, which present itself as decomposability in our case.

2.2.2 Mean Index for Paths of Lagrangian Correspondences

The aim of this section is to extend the definition of the mean index for

paths of symplectic matrices to paths of Lagrangian correspondences from V to itself

which start at the identity (which corresponds to the diagonal in V −×V ) and which

ends in G = {Λ ∈ Lag(V − × V )
∣∣ halo(Λ) ∩ dom(Λ) = {0}}. For completeness, we

shall recall the definition of the mean index for paths of symplectic matrices here,

following [62, 27].

For a path of symplectic matrices Φ: [0, 1]→ Sp(2n), the mean index µ̂(Φ)

measures the total rotation angle of certain unit eigenvalues of Φ(t) and can be

defined as follows. For A ∈ Sp(2), set ρ(A) = eiκ if A is conjugate to a counterclock-

wise rotation, ρ(A) = e−iκ if conjugate to a clockwise rotation, and ρ(A) = ±1 when

A is hyperbolic with the sign of eigenvalues matching the sign of ρ(A). Notice that

ρ is a continuous conjugation invariant function, which restricts to the determinant

over U(2). For A ∈ Sp(2n) with distinct eigenvalues, let ρ(A) =
∏k
j=1 ρ(Aj) where

Aj ∈ Sp(2) such that A is conjugate to
⊕k

j=1Aj . Again, ρ extends as a continuous

conjugation invariant function that restricts to the determinant over U(n). For the

path Φ, set ρ(Φ(t)) = eiκ(t) to get the total rotation of the preferred eigenvalues as

µ̂(Φ) = (κ(1)− κ(0))/2.
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Throughout the exposition, let # denote the concatenation of two paths.

More precisely, for γ1, γ2 : [0, 1] → X such that γ1(1) = γ2(0), the concatenation of

γ1 and γ2 is given by

(γ1#γ2)(t) =


γ1(2t), t ∈ [0, 1

2 ]

γ2(2t− 1), t ∈ [1
2 , 1]

Also, let γ−1 for a path γ : [0, 1]→ X denote the reversed path, i.e. γ−1(t) = γ(1−t).

Definition 2.2.3 (Mean Index for Paths of Linear Lagrangian Correspondences).

Given

a path of linear Lagrangian correspondences Λ̃ : [0, 1]→ Lag(V − × V ) where Λ̃(0) =

∆ and Λ := Λ̃(1) ∈ G, let Vg, Vp, φ, λi be as in Theorem 2.2.1 for Λ. Also let C be a

loop based at ∆ such that Λ̃ is homotopic to C# Gr(Φ(t)⊕Ψ(t))t∈[0,1] where

(a) Φ(t) ∈ Sp(Vg) for t ∈ [0, 1] and Ψ(t) ∈ Sp(Vp) for t ∈ [0, 1)

(b) Φ(0) = 1Vg and Ψ(0) = 1Vp

(c) Ψ(t) is hyperbolic for t ∈ (0, 1)

(d) Φ(1) = φ and Gr(Ψ(t))
t→1−−→ λ1 × λ2

Such paths always exists and the mean index of the path Λ̃ is

µ̂(Λ̃) = µ(C) + µ̂(Φ) (2.2)

where µ(·) denotes the Maslov index [60].

The existence of the path Ψ(t) given in the definition (especially with the

hyperbolicity requirement) might not be obvious at first. To that extend, given
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a pair of transverse Lagrangians λ1, λ2, let ψ(t) be the hyperbolic map such that

Ψ(t)(v) = t−1v1 + tv2 where v = v1 + v2 with vi ∈ λi. The map is well-defined

since the transversality of the Lagrangian pair ensures that V = λ1 + λ2 and the

decomposition v = v1 + v2 is unique. It is not hard to show that Gr(Ψ(t))
t→∞−−−→

λ1×λ2 using projection operators (cf. Theorem 2.2.5). Moreover, the index is well-

defined since any other choice of paths homotopic to C#Φ would yield no change

in both indices µ and µ̂ due to the fact that they are homotopically invariant.

Remark 2.2.4. The new mean index is homogeneous with respect to iterating via

products, i.e µ̂(γk) = kµ̂(γ) for a path γ as in Definition 2.2.3, where γk : [0, 1] →

Lag((V −×V )k) with γk(t) = γ(t)×. . .×γ(t). This is rather straightforward following

the additive property of the Maslov index under products and the mean index for

path of symplectic matrices. This also holds for the standard mean index with a

crucial difference in the construction: In the identity µ̂(Φk) = kµ̂(Φ), Φk : [0, 1] →

Sp(2n) is obtained by composition (cf. [62, Lemma 3.4]), not by taking products.

The “composability” of Lagrangian correspondences as in [73, 49] is a topic in its

own right and we emphasize that we do not impose any such condition on our

correspondences.

It is rather straightforward to see that µ̂(Φ) = µ̂(Gr(Φ)), therefore the new

mean index agrees with the standard mean index for paths of linear symplectomor-

phisms. Therefore the next task is to prove the continuity of µ̂.

Theorem 2.2.5 (Continuity of the Mean Index). Let Λ̃n be a converging sequence

of paths such that Λ̃n(1) ∈ G for all n, and Λ̃n
n→∞−−−→ Λ̃ with Λ̃(1) ∈ G. Then
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µ̂(Λn)
n→∞−−−→ µ̂(Λ̃).

Proof. Since all the endpoints fall within G, we can approximate each Λ̃n(1) by a

sequence of graphs of paths of linear symplectomorphisms Ψn,m(t) following the

idea of paths in Definiton 2.2.3. Taking the diagonal sequence now, we obtain

Ψn(t) whose graphs as a path approximate Λ̃. Following the same definition, let

Cn be a sequence of curves which approximates C such that the decomposition

Gr(Ψn) = Cn# Gr(Ψ̃n) approximates Λ = C#(Gr(Φ(t)) ⊕ λ1 × λ2)t∈[0,1]. Since

the graph part converges to the standard mean index, we should investigate the

behavior of linear symplectic maps whose graphs are arbitrarily close to a product

of transversal Lagrangian pair.

Proposition 2.2.6. Suppose that there is a sequence of symplectic matrices {An}n∈N

whose graphs {Gr(An)}n∈N converge to λ1×λ2 ⊂ Lag(R4n), a product of two trans-

verse Lagrangians λ1, λ2 ∈ Lag(R2n). Then the eigenvalues of An are all eventually

hyperbolic.

Proof. A sequence {Λn}n∈N in the Lagrangian Grassmanian converges to Λ if the

projection operators PΛn converges to PΛ. Hence, we should explore how the pro-

jections operators behave as the sequence converges. In order to compute the pro-

jection operator onto the graph of a matrix Gr(A), consider the matrix B =
[
I
A

]
.

The columns of B constitute a basis for Gr(A) and the projection operator can be
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computed as

PA = B(BTB)−1BT =

I
A


[I AT

]I
A



−1 [

I AT

]

=

I
A

 (I +ATA)−1

[
I AT

]

Hence, for S = (ATA+ I)−1, we have

PA =

 S SAT

AS ASAT

 (2.3)

Notice that since S is symmetric, the projection matrix is symmetric, as well as all

its blocks. We would like to investigate the behavior of eigenvalues of PAn as it

converges to the block form

Pλ1×λ2 =

P1 0

0 P2


where the blocks P1, P2 are projection operators to λ1, λ2 respectively. Thus we

expect eigenspaces eventually converge to transversal pair of Lagrangians whereas

the eigenvalues should either converge to 0 or 1. As it turns out, this behavior is

due to a relationship between singular values of A and the eigenvalues of the blocks

of PA.

Definition 2.2.7. (σ, u, v) is a singular triple of A if Au = σv and AT v = σu.

Notice that if (σ, u, v) is a singular triple of A, then σ is a singular value

(in linear-algebra-sense) of A.
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Lemma 2.2.8. Let (σ, u, v) be a singular triple of A. Then

(i) ((σ2 + 1)−1, u) is an eigenvalue-eigenvector pair of S.

(ii) (σ2(σ2 + 1)−1, v) is an eigenvalue-eigenvector pair of ASAT .

(iii) (σ(σ2 + 1)−1, u, v) is a singular triple for AS.

(iv) (σ(σ2 + 1)−1, v, u) is a singular triple for SAT .

Proof. By the definition of the singular triple, we have ATAu = σAT v = σ2u and

hence (i) follows. Similarly, ASAT v = σASu = σ(σ2 + 1)−1Au = σ2(σ2 + 1)−1v

gives (ii); ASu = (σ2 + 1)−1Au = σ(σ2 + 1)−1v and SAT v = σSu = σ(σ2 + 1)−1u

gives (iii) and (iv).

Now, assume that we have a sequence of matrices {An}n ∈ N whose graphs

converge to the product of two transverse Lagrangians λ1, λ2. Following Lemma

2.2.8 and the block-form of the projection matrix, AS and SAT must converge to

zero blocks and therefore all their singular values must converge to 0, i.e.

lim
n→∞

σi,n
σ2
i,n + 1

= 0.

This is only possible for either σi,n
n→∞−−−→ 0 or σi,n

n→∞−−−→ ∞. Notice that in

both cases, the eigenvalue-eigenvector pairs for S and ASAT converge to 1 and 0

respectively, which forces the two spaces that we project on to be transversal. Since

the singular values become eventually hyperbolic, the eigenvalues eventually become

hyperbolic. This proves the proposition.
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Now, we are ready to complete the proof of the theorem. By Proposition

2.2.6, the linear maps that approximate λ1×λ2 eventually become hyperbolic, which

forces the index µ̂(Gr(Ψn

∣∣
Vp

))
n→∞−−−→ 0.

Remark 2.2.9. The condition on λ1, λ2 being transversal in Proposition 2.2.6 (which

is equivalent to Λ ∈ G) is essential. As an example here, we construct a sequence

of matrices whose graphs approach λ × λ ∈ R4 while the rotation number can be

arbitrary.

For fixed θ ∈ S1 − {±1}, consider

An =


cos θ +

(
2n2 +

1

n2

)
sin θ −

(
n2 +

1

n2

)
sin θ

(
4n2 +

1

n2

)
sin θ cos θ −

(
2n2 +

1

n2

)
sin θ



Notice that xn = 1
n

 1

1

 and yn = n

 1

2

 form a Darboux basis with

Anxn =
1

n

 cos θ + n2 sin θ

cos θ + 2n2 sin θ

 = (cos θ)xn + (sin θ)yn

Anyn = n


cos θ − 1

n2
sin θ

2 cos θ − 1

n2
sin θ

 = (− sin θ)xn + (cos θ)yn

So An is a fixed rotation on the aforementioned Darboux basis. To see where the

graph converges, let

un =
csc θ

n
xn

n→∞−−−→

 0

0

 and vn =
1

n
yn −

cot θ

n
xn

n→∞−−−→

 1

2
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Clearly {un, vn} is a basis (not Darboux) for n ∈ N and we have

Anun =
cot θ

n
xn +

1

n
yn

n→∞−−−→

 1

2


Anvn = −sin θ

n
xn +

cos θ

n
yn −

cos2 θ

n sin θ
xn −

cos θ

n
yn

= −csc θ

n
xn

n→∞−−−→

 0

0


Therefore {(un, Anun) , (vn, Anvn)} n→∞−−−→ {(0, 0, 1, 2), (1, 2, 0, 0)}, which means that

the sequence of graphs Gr(An) converge to the product λ×λ with λ = span{(1, 2)}

while An is a rotation with a fixed angle on a varying basis.

2.2.3 Grading for Linear Lagrangian Correspondences and Index

for Graded Linear Lagrangian Correspondences

This section focuses on developing grading and index to be used in inter-

section Floer homology.

Definition 2.2.10 (Grading of Linear Lagrangians). A grading of Λ ∈ Lag(V −×V )

is a lift Λ̃ of Λ to the universal cover L̃ag(V −×V ) realized as paths up-to-homotopy

based at the diagonal, i.e. a path starting from the diagonal ∆ and ending at Λ.

Definition 2.2.11 (Relative Maslov index [60, Section 3]). Given two graded La-

grangians Λ̃1, Λ̃2 ∈ L̃ag(V − × V ), let C = {s ∈ [0, 1]
∣∣ Λ̃1(s) ∩ Λ̃2(s) 6= {0}} be the

set of crossings, and, for s ∈ C and W1,W2 a pair of Lagrangian complements to
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Λ̃1(s), Λ̃2(s) respectively, let

Γ(Λ̃1, Λ̃2; s)v =
d

dt

∣∣∣∣∣
t=0

Ω(v, w1(t)− w2(t))

be the crossing form where v ∈ Λ̃1(s) ∩ Λ̃2(s) and wi(t) ∈Wi such that v + wi(t) ∈

Λ̃1(s + t) for small t. Assume that all crossing forms are non-degenerate (such a

path is called regular). Now the relative Maslov index is defined as

µ(Λ̃1, Λ̃2) =
1

2

∑
s∈C∩{0,1}

sign Γ(Λ̃1, Λ̃2; s) +
∑

s∈C∩(0,1)

sign Γ(Λ̃1, Λ̃2; s)

Also, let

µδ(Λ̃1, Λ̃2) =
1

2

∑
s∈C∩{0,1}

sign Γ(Λ̃1, Λ̃2; s) and µ0(Λ̃1, Λ̃2) =
∑

s∈C∩(0,1)

sign Γ(Λ̃1, Λ̃2; s).

Due to Remark 2.1.2, since we realize k-periodic orbits as intersection of

Lk with Dk, we shall need a grading for Dk in order to associate an intersection

index to periodic points. Now we focus on how to define a canonical grading to the

twisted multi-diagonal.

Following [73, Remark 3.0.5(b)], choose any Lagrangian λ ∈ Lag(V ) and

let

γ : =

σt︷ ︸︸ ︷(
exp(tJ)λ− × λ

)
t∈[0, π2 ]#

ρt︷ ︸︸ ︷
({(tx+ Jy, x+ tJy) : x, y ∈ l})t∈[0,1]

This path connects λ × λ to ∆ with vanishing Maslov index. Therefore taking

a k-fold products and concatenating we get the canonical grading of the twisted

multi-diagonal as

D̃k := [(γ−1 × · · · × γ−1)#(γ × · · · × γ)T ] (2.4)

where γ−1 denotes the reversed path from ∆ to λ× λ and [·] denotes the homotopy

class of the path within.
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Definition 2.2.12. The iterated index of a graded Lagrangian correspondence is

given by µ(Λ̃, k) = µ(Λ̃k, D̃k) where the Λk is the k-fold product of the Lagrangian

correspondence whose grading is derived from the product, and D̃k as in (2.4).

The iterated index would be crucial in Section 2.5 as it is related directly

to the degree in intersection Floer theory. More precisely, the degree [73, Definition

3.0.9] is given by

d(Λ̃1, Λ̃2) =
1

2
dim(Λ1) + µ(Λ̃1, Λ̃2) (2.5)

or alternatively, following [73, Remark 3.0.10], d(∆, Λ̃) = µ0(∆, Λ̃). Moreover, we

have the following identity relating the iterated index to the aforementioned degree.

Proposition 2.2.13. µ(Λ̃, k) = d(Λ̃k, D̃k)

Proof. It is straightforward to conclude that the representative in (2.4) is not regu-

lar at the end-point by computing the crossing form relative ∆. However, one can

use the homotopy invariance of Maslov index to come up with another representa-

tive homotopic to (2.4) relative endpoints. The best way to understand both the

homotopy class and the grading is through frames. Therefore, we start the proof by

presenting frames for γ and introducing the new representative.

Since the grading of the path γ in (2.4) does not depend upon the choice

of complex structure, fixing a basis {ei}ni=1 for λ and completing it to a symplec-

tic basis {ei, fi}ni=1, we can choose the compatible complex structure defined by

Jei = fi and assume without loss of generality that exp(tJ) becomes the standard

rotation matrix in these coordinates. For εi(t) = exp(tJ)ei, a suitable basis for

σt is {(εi(t), 0), (0, ei)}ni=1. Notice that, εi(t) = (cos t)ei + (sin t)fi for t ∈ [0, π2 ].
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Similarly, for ρt, a suitable basis is given by {(fi, tfi), (tei, ei)}ni=1.We can extend

these bases as (σt)
k = span{ui,j(t), vi,j

∣∣ i = 1, . . . , n and j = 1, . . . , k} and (ρt)
k =

span{wi,j(t), zi,j(t)
∣∣ i = 1, . . . , n and j = 1, . . . , k} with

πm(ui,j(t)) = (δjmεi(t), 0)

πm(vi,j) = (0, δjmei)

πm(wi,j(t)) = δjm(fi, tfi)

πm(zi,j(t)) = δjkm(tei, ei)

where πm : (V − × V )k → V − × V denotes the projection onto the mth component

of the product, and δjm denotes the Kronecker delta. Since the grading for the

transposed component is simply obtained by transposing the path γk, we can use

the transposed bases for (∆k)T . Here, we modify the path slightly, specifically the

second leg of the concatenation ρkt to ρ̃kt as follows. Let τ : [0, 1]→ R is a continuous

function so that τ(0) = τ(1) = 0, τ(t) > 0 for t ∈ (0, 1), and ‖τ‖∞ is small but

non-zero, e.g. τ(t) = ε(t − t2) for small ε > 0. Let ρ̃kt (t) = span{w̃i,j(t), z̃i,j(t), i =

1, . . . , n, j = 1, . . . , k} with

πm(w̃i,j(t)) = δmj(− sin τ(t)ei + cos τ(t)fi, tfi)

πm(z̃i,j(t)) = δmj(tei, cos τ(t)ei + sin τ(t)fi)

Thus γ̃k := (σkt )t∈[0,
π
2 ]#(ρ̃kt )t∈[0,1] and (γk)T combined gives the modified represen-

tative for the grading D̃k := [(γ̃k)−1#(γ̃k)T ]. Now we are ready to prove that this

representative (hence the grading associated to it) does not introduce any intersec-

tion index to the degree.
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Lemma 2.2.14. The index µ0(D̃k,∆k) vanishes and the crossing form relative ∆k

at the endpoint of D̃k has signature 0.

Proof. In the discussion below we shall denote the symplectic structure in (V ×V −)k

as Ωk =
⊕k

j=1(ω)⊕ (−ω). Moreover, since V =
n⊕
i=1

span{ei, fi} is a symplectic

decomposition, without loss of generality, we shall assume that n = 1. Hence, to

simplify the notation, we shall discard the index that runs through the basis of

λ, e.g. uj = ui,j , e = ei, etc. Moreover, using the concatenation property of the

relative Maslov index [60, Theorem 2.3], µ(D̃k,∆k) = µ(γ̃k, (γ̃k)T ).

Assume that s ∈
(
0, π2

]
is a regular crossing for the pair (σkt , (σ

k
t )T ). Let

aj , bj , αj , βj be real coefficients for j ∈ Z/kZ, not all of them equal to 0, so that

k∑
j′=1

aj′uj′(s) + bj′vj′(s) =
k∑

j′=1

αj′u
T
j′(s) + βj′v

T
j′(s)

Using the projection πj for j ∈ Z/kZ, we have

ajε(s) = βje and bje = αj+1ε(s) =⇒


aj cos s = βj bj = αj+1 cos s

aj sin s = 0 0 = αj+1 sin s


Since sin s 6= 0 on

(
0, π2

]
, we should have aj = αj = 0 for all j ∈ Z/kZ, and in

turn, βj = bj = 0. Therefore, there are no intersections along the first part of the

concatenation.

For the second part of the path, assume that s ∈ (0, 1) is a regular crossing

for the pair (ρ̃kt , (ρ
k
t )
T ). Using same symbols for the coefficient set and projecting
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via πj , we get

(−aj sin τ)e+ (aj cos τ)f + (sbj)e = (sαj)f + (βj)e

(saj)f + (bj cos τ)e+ (bj sin τ)f = (αj+1)f + (sβj+1)e

which yields

−aj sin τ + sbj = βj aj cos τ = sαj

saj + bj sin τ = αj+1 bj cos τ = sβj+1

or equivalently

− sin τaj + sbj = βj aj = s sec ταj

saj + sin τbj = αj+1 bj = s sec τβj+1

(2.6)

For a fixed parameter s, (2.6) is a linear system of equations in c = (a1, b1, . . . , ak, bk)

and θ = (α1, β1, . . . , αk, βk). Therefore, we shall introduce matrices to express them.

Let

m1 =

 0 s sec τ

s sec τ 0

 , m2 =

− sin τ t

t sin τ


Also, let M1 = Σ−1(diag(m1, . . . ,m1)) and M2 = Σ(diag(m2, . . . ,m2)), where diag

denotes the block-diagonal matrix with blocks given in the argument, Σ denotes the

transposition of the last row of any matrix to the first, and the matrices m1,m2 are

repeated k times. In this setup, the equation set (2.6) can be compactly written as

c = M1θ and θ = M2c. Thus c = M1θ = M1M2c has a non-trivial solution if and

only if M := M1M2 has eigenvalue 1, i.e. det(M − I) = 0. It is straightforward to
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show that for M̃ = Σ(M − I), we have

M̃ =



U V

V U

V
. . .

V U


:=

 A B

C U



where

U =

−s tan τ s2 sec τ

−1 0

 and V =

 0 −1

s2 sec τ s tan τ

 .
The determinant formula for the block matrices yield det(M̃) = det(U) det(A −

BU−1C) where

BU−1C =



0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

V U−1V 0 · · · 0


=⇒ det(A−BU−1C) = det(A) = (det(U))k−1

Here, we also used the fact that A is block-lower-diagonal with diagonal blocks U .

Therefore det(M̃) = (det(U))k = (t2 sec τ)k. Since det(M) and det(M̃) differ by a

sign, and det(M̃) 6= 0 by the choice of the function τ . Therefore there are no interior

crossings, which completes the first part of the proof.

In order to compute the crossing form at the endpoint t = 1, we need to

find complements to the Lagrangians. Thus, let W = span{ζj , ξj : j = 1, . . . , k} and

W ′ = span{ζTj , ξTj : j = 1, . . . , k} where

πm(ζj) = δmj(f,−f)

πm(ξj) = δmj(e,−e)
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Notice that the intersection of the endpoints is

γ̃k1 ∩ (γk1 )T = {(v, v, . . . , v, v)
∣∣ v ∈ V } = span{(e, e, . . . , e, e), (f, f, . . . , f, f)}

Our approach is as follows. Since the intersection is spanned by v1 = (e, e, . . . , e, e)

and v2 = (f, f, . . . , f, f), the intersection form Γ can be realized as a bilinear form

given by

Γij =
d

dt

∣∣∣∣∣
t=1

Ωk(vi, wj(t)− w̄j(t))

Let v1 = (e, e, . . . , e, e), in order to compute the intersection form, we need to find

wi(t) ∈W such that vi + wi(t) ∈ ρ̃kt and vi + w̄i(t) ∈ (̃ρkt )
T for i = 1, 2.

To find w1(t) =
∑n

j=1 aj(t)ζj + bj(t)ξj , we need to compute the coefficients

aj , bj ∈ R provided that v1 + w1(t) ∈ ρ̃kt . Notice that

πm(v1 + w1(t)) = (1 + bm)(e, 0) + am(f, 0) + (1− bm)(0, e)− am(0, f)

Therefore, in order for v1 + w1(t) ∈ ρ̃kt to hold we need

πm(v1 + w1(t)) = αm(− sin τ(t)(e, 0) + cos τ(t)(f, 0) + t(0, f))

+ βm(t(e, 0) + cos τ(t)(0, e) + sin τ(t)(0, f))

Since this boils down to balancing coefficients αm, βm, assume that αm = am sec τ

and βm = (1− bm) sec τ , which would balance the second and the third term in the

expression of πm(v1 + w1(t)). Thus we obtain following equations by balancing the
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first and the last terms.

1 + bm = −am tan τ + (1− bm)t sec τ

−am = at sec τ + (1− bm) tan τ

=⇒
am(tan τ) + bm(1 + t sec τ) = t sec τ − 1

am(1 + t sec τ)− bm(tan τ) = − tan τ

=⇒

 tan τ 1 + t sec τ

1 + t sec τ − tan τ


am
bm

 =

t sec τ − 1

− tan τ


By inverting the matrix we can find the coefficients as

am =
−2 tan τ

tan2 τ + (1 + t sec2 τ)2
and bm =

tan2 τ + t2 sec2 τ − 1

tan2 τ + (1 + t sec2 τ)2

and therefore

w1(t) =

k∑
j=1

−2 tan τ

tan2 τ + (1 + t sec2 τ)2
ζj +

tan2 τ + t2 sec2 τ − 1

tan2 τ + (1 + t sec2 τ)2
ξj

A similar computation for w2 yields

w2(t) =
k∑
j=1

1− t2 sec2 τ − tan2 τ

tan2 τ + (1 + t sec2 τ)2
ζj +

−2t sec τ tan τ

tan2 τ + (1 + t sec2 τ)2
ξj

Therefore we have

Ωk(v1, w1) = k
2 tan τ

tan2 τ + (1 + t sec τ)2
Ωk(v2, w1) = k

tan2 τ + t2 sec2 τ − 1

tan2 τ + (1 + t sec τ)2

Ωk(v1, w2) = k
tan2 τ + t2 sec2 τ − 1

tan2 τ + (1 + t sec τ)2
Ωk(v2, w2) = k

−2t sec τ tan τ

tan2 τ + (1 + t sec τ)2

This completes the first terms needed for the computation of the intersection form.

Following the similar idea, to find w̄1(t) =
∑n

j=1 āj(t)ζ
T
j + b̄j(t)ξ

T
j provided

that v1 + w̄1(t) ∈ (ρ̃kt )
T , we compare the projections πm(v1 + w̄1(t)) to get

(1 + b̄m)(e, 0) + ām(f, 0) + (1− b̄m)(0, e)− ām(0, f)

= ᾱm((f, 0) + t(0, f)) + β̄m(t(e, 0) + (0, e))
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Firstly, comparing the coefficients of (f, 0) and (0, f), we realize that ām must be

zero. Secondly, comparing the coefficients of (e, 0) and (0, e) on both sides, we get

1 + b̄m
1− b̄m

=
tβ̄m
β̄m

=⇒ b̄m =
t− 1

t+ 1

which yields w̄1(t) = t−1
t+1

∑n
j=1 ξ

T
j . As in the previous computation, one can similarly

show that w̄2(t) = 1−t
t+1

∑n
j=1 ζ

T
j . Therefore we have

Ωk(v1, w̄1) = 0 Ωk(v2, w̄1) = k
t− 1

t+ 1

Ωk(v1, w̄2) = k
t− 1

t+ 1
Ωk(v2, w̄2) = 0

Now, using the definition of the crossing form we compute

Γ11 =
k

2

dτ

dt
(1) Γ21 = Γ12 = 0 Γ22 = −k

2

dτ

dt
(1) (2.7)

which implies the signature of the crossing form is 0 at t = 1, hence it does not

contribute to the index.

Remark 2.2.15. Coming back to the problem with the initial representative to the

grading in (2.4), if we let τ(t) = 0 identically, then the last computation (2.7) shows

that the crossing is not regular at the final point. Even though the crossing form at

the final point does not enter into picture while computing µ0(D̃k,∆k), it is crucial

while iterating µ0(L̃,∆).

Corollary 2.2.16. µ(Λ̃, k) = µ0(Λ̃k, Dk) where Dk denotes the constant path at Dk

and µ0 as in Definition 2.2.3.

Proof. It follows from Lemma 2.2.14 and the homotopy invariance of µ that the only

signatures in µ(Λ̃, k) that might arise should come from the endpoint Dk intersecting

Λ̃k, which is precisely µ0(Λ̃k, Dk).
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Now, to prove Proposition 2.2.13, notice that d(Λ̃, D̃k) = d((γ̃k)#Λ̃, (γ̃k)T )

by the concatenation property [60, Theorem 2.3]. Notice that both paths now

originate at (λ×λ)k. Now, by [73, Remark 3.0.10], we can choose the crossing form

at the beginning to be completely negative definite to cancel with the dimension

term, and therefore get d(Λ̃, D̃k) = µ0(Λ̃, D̃k). Here, we also use the fact that at the

concatenation point (which is the Λ̃(0)) the intersection form has vanishing signature

as proven in Lemma 2.2.14. Therefore d(Λ̃, D̃k) = µ0(Λ̃, Dk) = µ(Λ̃, k).

Remark 2.2.17. To reveal the relation of the iterated index with the Conley-Zehnder

index (cf. [62, 60]), consider Λ̃(t) = Gr(φt) for φt ∈ Sp(V ) such that φ(0) = 1V

and φ(1) weakly non-degenerate. Then we have µ(Λ̃, k) = µ0(Λ̃k, Dk) by Corollary

2.2.16. Moreover, notice that (x1, φ(x1), . . . , xk, φ(xk)) ∈ Λ̃k∩Dk is non-trivial if and

only if xi = φ(xi−1) for i ∈ Z/kZ, which is equivalent to (x1, φ
k(x1)) ∈ ∆∩Gr(φk).

Therefore, µ(Λ̃, k) = µ(Gr(φk),∆) which is nothing but the Conley-Zehnder index

µCZ(Φk) cf. [60, Remark 5.4].

2.3 Bounding The Gap Between Mean and Iterated In-

dex

The aim of this section is to extend the index gap bound for weakly non-

degenerate Hamiltionian diffeomorphisms (cf. [62]) to weakly non-degenerate La-

grangian correspondences. The grading of the Lagrangian correspondence plays a

crucial role as it replaces the path that arises by the Hamiltionian diffeomorphism.
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Theorem 2.3.1. Given a graded weakly non-degenerate Lagrangian correspondence

Λ̃, we have |µ(Λ̃, k)− kµ̂(Λ̃)| < n for all k, where 2n = dim(Λ).

For Λ̃ = Gr(Φ) for Φ: [0, 1]→ Sp(V ) a path of linear symplectomorphisms

such that Φ(0) = 1V and Φ(1) weakly non-degenerate, the theorem recovers [27,

(CZ1)] with a strict inequality. We would like to emphasize again that the iteration

in the Hamiltonian diffeomorphism case is composition whereas our iterations are

taking products.

Proof. For given Λ̃, let C,Φ, λ1, λ2 be as in Definition 2.2.3. Now the contribution

of µ(C) to both µ(Λ̃, k) and kµ̂(Λ̃) is kµ(C) simply because the former is defined by

products and the Maslov index is homogeneous with respect to products. Therefore,

the loop does not contribute to the gap and we can analyze two separate cases using

the decomposition in Theorem 2.2.1. If λ1 = λ2 = {0}, then Definition 2.1.3 forces

φ to be weakly non-degenerate and the gap bound as in [27, (CZ1)] is satisfied

with strict inequality with 2n = dimVg = dimV . Otherwise, a similar inequality

|µ(Φk) − kµ(Φ)| ≤ n′ is satisfied with possible equality, while 2n′ = dimVg <

dimV = 2n. Therefore, in both cases, we have |µ(Λ̃, k)− kµ̂(Λ̃)| < n.

Corollary 2.3.2. Given a graded weakly non-degenerate Lagrangian correspondence

Λ̃, either |µ(Λ̃, k)| k→∞−−−→ ∞ or |µ(Λ̃, k)| remains strictly bounded above by n for all

k.

Proof. Following Theorem 2.3.1, if the mean index µ̂(Λ̃) vanishes then the index

remains strictly bounded. Otherwise, since |kµ̂(Λ̃)| increases unboundedly, the iter-
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ated index term |µ(Λ̃, k)| must increase unboundedly in order to keep up with the

bound.

2.4 Lagrangian Floer Homology and Homology of Iter-

ated Lagrangian Correspondences

The aim of this section is to establish homological results for Lagrangian

correspondences. The main tool we will use is the Lagrangian Floer homology

[16, 20], defined for a pair of Lagrangian submanifolds L0, L1 ⊂ W whose chain

complex comprises intersection points L0 ∩ L1. In order to understand how this

chain is graded, we need to introduce some structures required within the theory.

Let Lag(M) denote the fiberwise Lagrangian Grassmannian of M , i.e.

Lag(M) = {(x,Λ): x ∈M and Λ ∈ Lag(TxM)}.

One can consider fiberwise universal covers of the Lagrangian Grassmannians and

form a bundle covering Lag(M). Such a bundle exists provided that c1(TM) = 0

[63, 44]. Moreover, the universal covers of Lag(M) is in one-to-one correspondence

with S̃p(2n)-structures on M , where 2n = dimM (cf. [73, Section 3]). In our

setting, we fix a universal cover and denote it by L̃ag(M). Since this construction

extends to products and duals, we obtain a universal cover L̃ag(M− ×M).

Definition 2.4.1. For M
L−→M , a grading of L is a lift of the map L→ Lag(M−×

M) to σL : L → L̃ag(M− ×M). A grading of a symplectomorphism ϕ : M → M is

a lift of φ : Lag(M)→ Lag(M) to a bundle isomorphism φ̃ : L̃ag(M)→ L̃ag(M).
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Given two Lagrangians L0, L1 with respective gradings σ0, σ1, intersecting

transversely at x ∈ L0 ∩ L1, we can associate a degree

|x| = d(σ0(x), σ1(x)) (2.8)

with d(·, ·) as in (2.5), which grades the chain complex of the Lagrangian intersection

homology HF (L0, L1)

Following [73, Remark 3.0.7(c)], there is a canonical way of associating

a grading to the diagonal, denoted by ∆̃ ∈ L̃ag(M− ×M), fixed throughout the

discussion. Now we would like to introduce grading for Lagrangian correspondences

M
L−→ M Hamiltonian isotopic to the diagonal. Therefore, we shall assume that

L = ϕ(∆) with a Hamiltonian isotopy ϕt such that ϕ = ϕ1 and ϕ0 = 1M−×M . Thus,

by [73, Remark 3.0.7(b)], the map ϕ has a grading. More precisely, the Hamiltonian

diffeomorphism ϕ induces first an isomorphism of bundles φ : Lag(M− ×M) −→

Lag(M−×M), which can be lifted to an isomorphism between the universal covers

φ̃ : L̃ag(M− ×M) −→ L̃ag(M− ×M) using the lift of the identity map, which is

derived from the grading of the diagonal ∆ = Gr(1M ) as in [73, Remark 3.0.7(c)],

together with the Hamiltonian isotopy ϕt. Now following [73, Remark 3.0.7(f)], the

Lagrangian correspondence L considered as an image ϕ(∆) gets a grading σL, which

is the composition of the grading of the diagonal with the grading of the Hamiltonian

diffeomorphism ϕ.

We are interested in a single Lagrangian correspondence M
L−→ M and its

iterations. The points of interest are intersection of Lk = L × · · · × L with Dk as

pointed out in Remark 2.1.2. Therefore, the intersection Floer homology that we
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are interested in is HF (L, k) := HF (Lk, Dk). We would like to understand how

the generators of the chain complex of HF (L, k), which are nothing but k-periodic

orbits, behave under iteration since the result we are seeking states the existence of

infinitely many simple orbits. Therefore the key step towards the result is through

computing the cohomology for arbitrary k.

Theorem 2.4.2. Let L be a weakly non-degenerate Lagrangian correspondence,

Hamiltonian isotopic to the diagonal. Then

HF∗(L, k) ∼= H∗+n(M)

for any k.

Proof. By definition HF∗(L, k) = HF∗(L
k, Dk), and, due to the isotopy assumption,

Lk is Hamiltonian isotopic to ∆k. Sinee the Lagrangian Floer homology is invariant

under Hamiltonian isotopies, we have HF∗(L
k, Dk) ∼= HF∗(∆

k, Dk). Now, since

∆k and Dk intersect cleanly along the little diagonal D = {(x, x, . . . , x, x) : x ∈

M} ⊂ (M− ×M)k, by [58, Corollary 3.4.13] HF∗(L
k, Dk) ∼= H∗+n(M). Therefore,

HF∗(L, k) ∼= H∗+n(M).

2.5 Proof of Theorem 2.1.4

Assume that we have a weakly non-degenerate Lagrangian correspondence,

Hamiltonian isotopic to the diagonal, together with a grading for the diagonal ∆̃

as a section of the universal cover bundle L̃ag(M− ×M). Moreover, assume for

a contradiction that the correspondence has finitely many simple periodic orbits
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whose periods are k1, . . . , kN . Let K = lcm(k1, . . . , kN ), the least common multiple

of the principle. Let L = LK and consider HF (L, k). Note that L has only fixed

points due to the assumption that there are only finitely many periodic orbits. Now,

since the iterated index of all fixed points of L needs to satisfy Corollary 2.3.2, the

highest degree of the homology cannot have any generators, due to the fact that the

index n could never be achieved. Therefore, L must have at least one simple periodic

orbit, which means that the original correspondence L must have another simple

periodic orbit, which is a contradiction. This completes the proof of Theorem 2.1.4

as promised.
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Chapter 3

Resonance Relations for Closed

Reeb Orbits

3.1 Iterated index

In this section, we establish a few elementary results concerning the count,

with multiplicity and signs, of periodic orbits of smooth maps. Although we feel

that these results must be known in some form, we are not aware of any reference;

see however [10, 12], and also [42, Chapter 3] and [66, Section I.4], for related

arguments. Throughout the section, all maps are assumed to be at least C1-smooth

unless explicitly stated otherwise.

3.1.1 Iterated index of a map

As a model situation, consider a C1-smooth map F : M →M , where M is

a closed manifold. We are interested in an algebraic count of periodic orbits of F .
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To state our main results, let us first review some standard definitions and facts.

Denote by Fix(F ) the set of the fixed points of F . Recall that x is a κ-

periodic point of F if F κ(x) = x, i.e., x ∈ Fix(F κ), and that τ is the minimal period

of x if τ is the smallest positive integer such that F τ (x) = x. The κ-periodic orbit

containing x is the collection O = {x, F (x), . . . , F κ−1(x)} of not necessarily distinct

points (naturally parametrized by Z/κZ). The minimal period is then the length

(i.e., the cardinality) of the orbit or, more precisely, of its image in M . Note that

necessarily τ |κ.

The index I(F, x) of an isolated fixed point x of F is the degree of the map

Sn−1 → Sn−1 given, in a local chart containing x, by

z 7→ z − F (z)

‖z − F (z)‖

where z belongs to a small sphere Sn−1 centered at x. It is not hard to see that

all points in a κ-periodic orbit O have the same index as fixed points of F κ. Thus,

setting I(F κ,O) := I(F κ, x) for any x ∈ O, we have the index assigned to a κ-

periodic orbit.

Furthermore, recall that a fixed point x of F is said to be non-degenerate

if 1 is not an eigenvalue of the linearization DFx : TxM → TxM and that F is called

non-degenerate if all its fixed points are non-degenerate. To proceed, let us first

assume that all periodic points of F are non-degenerate, i.e., all iterations F κ are

non-degenerate. (As follows from (a part of) the Kupka–Smale theorem, this is a

C∞-generic condition; see, e.g., [1, 66].) Then the index I(F κ, x) is equal to (−1)m,

where m is the number of real eigenvalues of DF κx in the range (1, ∞).
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Definition 3.1.1. Let x be a periodic point of F with minimal period τ . We say

that x is even (odd) is the number of real eigenvalues of DF τx : TxM → TxM in the

interval (−∞, −1) is even (odd). A κ-periodic point x with minimal period τ is said

to be bad if it is an even iteration of an odd point, i.e., x is odd and the ratio κ/τ

is even. Otherwise, x is said to be good. A κ-periodic orbit O is bad (good) if one,

or equivalently all, periodic points in O are bad (good).

Alternatively, the difference between even and odd (or good and bad) pe-

riodic points can be seen as follows. Let x be a periodic point with minimal period

τ . We can also view x as a κ-periodic point for any positive integer κ divisible by τ .

Then I(F κ, x) = I(F τ , x) when x is even and I(F κ, x) = (−1)1+κ/τI(F τ , x) when

x is odd. Finally, x, viewed as a κ-periodic point, is good or bad depending on

whether I(F κ, x) = I(F τ , x) or not. Since all periodic points in a periodic orbit

have the same index, this definition extends to periodic orbits.

The terminology we use here is borrowed from the theory of contact ho-

mology (see, e.g., [6, 13]). In dynamics, odd periodic orbits are sometimes also

referred to, at least for flows, as Möbius orbits (see [10]) or flip orbits. Furthermore,

note that the above discussion relies heavily on the fact that no root of unity is an

eigenvalue of DF kx due to the non-degeneracy assumption.

As is well known, the Lefschetz number I(F ) :=
∑

x∈Fix(F ) I(F, x) is a

homotopy invariant of F ; see, e.g., [18, 42]. (In particular, I(F ) can be extended “by

continuity” to all, not necessarily non-degenerate, maps F .) This, of course, applies

to F κ as well, and hence I(F κ) =
∑

x∈Fix(Fκ) I(F κ, x), the number of periodic points
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counted with signs, is also homotopy invariant. However, the number of κ-periodic

orbits, taken again with signs, is not homotopy invariant, i.e.,
∑
O I(F κ,O), where

the summation extends to all (not necessarily simple) κ-periodic orbits, can vary

under a deformation of F . (An example is, for instance, the second iteration of the

period doubling bifurcation map in dimension one, starting with an attracting fixed

point with an eigenvalue in (−1, 0) and ending with an odd repelling fixed point

and an (even) attracting orbit of period two, with the sum for κ = 2 changing from

1 before the bifurcation to 0 afterwards; cf. [77].) However, this sum is very close

to being homotopy invariant and it becomes such once the summation is restricted

to good orbits only. Namely, assuming as above that all periodic points of F are

non-degenerate, set

Iκ(F ) :=
∑

good O
I(F κ,O),

where the sum is now taken over all good κ-periodic orbits O of F , not necessarily

with minimal period κ. We call Iκ(F ) the iterated index of F . In the example of a

period doubling bifurcation mentioned above, we have I2(F ) = 1 before and after

the bifurcation. We emphasize that Iκ(F ) depends in general not only on F κ, but

separately on κ and F .

Let ϕ be the Euler function, i.e., ϕ(κ) is the number of positive integers

which are smaller than κ and relatively prime with κ. By definition, ϕ(1) = 1.

Theorem 3.1.2. Assume, as above, that F κ is non-degenerate. Then

Iκ(F ) =
1

κ

∑
d|κ

ϕ(κ/d)I(F d). (3.1)
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Since the right hand side of (3.1) is obviously homotopy invariant, so is

Iκ(F ). Furthermore, it extends by continuity to all F , not necessarily meeting the

non-degeneracy requirement. Namely, let F̃ be a small perturbation of F such that

all κ-periodic points of F̃ are non-degenerate. Then Iκ(F ) := Iκ(F̃ ) is well defined,

i.e., independent of the perturbation F̃ .

Example. Assume that F is homotopic to the identity. Then, so is F d for all d, and,

by Euler’s formula (see (3.2) below), we have I(F κ) = I(F ) = Iκ(F ) for all κ ≥ 1.

Proof of Theorem 3.1.2. A κ-periodic orbit O with minimal period τ = |O| con-

tributes to Iκ(F ) only when τ |κ, and to the individual terms on the right hand side

of (3.1) when τ |d. Set κ = τκ′ and d = τd′.

When O is good, its contribution to Iκ(F ) is equal to I(F κ,O) = I(F τ ,O).

On the other hand, its contribution to the right hand side of (3.1) is

1

κ

∑
τ |d|κ

ϕ(κ/d)I(F d,O)τ =
1

κ′

∑
d′|κ′

ϕ(κ′/d′)I(F τ ,O) = I(F τ ,O),

where we use Euler’s formula ∑
l|r

ϕ(l) = r; (3.2)

see, e.g., [33, Theorem 63].

Assume next that O is bad. Then κ′ = κ/τ is even and O, viewed as a

τ -periodic orbit, is odd, and I(F d,O) = (−1)1+d/τI(F τ ,O). Thus the contribution

of O to Iκ(F ) is zero and its contribution to the right hand side is

1

κ

∑
τ |d|κ

ϕ(κ/d)I(F d,O)τ = − 1

κ′

∑
d′|κ′

ϕ(κ′/d′)(−1)d
′
I(F τ ,O) = 0,
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where we now use the fact that

∑
l|r

(−1)lϕ(r/l) = 0 (3.3)

for any positive even integer r.

Finally, (3.3) can be proved, for instance, as follows. Set r = 2mc, where c

is odd and m ≥ 1 since r is even. Then, regrouping the terms on the left hand side

of (3.3), we have ∑
l|r

(−1)lϕ(r/l) =
∑
a|c

P (a),

where

P (a) = (−1)2maϕ(c/a) + (−1)2m−1aϕ(2c/a) + . . .+ (−1)aϕ(2mc/a),

and it suffices to show that P (a) = 0. Set b = c/a and recall that ϕ(2jb) = 2j−1ϕ(b)

since ϕ is multiplicative and b is odd; [33]. When m = 1, we clearly have P (a) =

ϕ(b)− ϕ(b) = 0. Likewise, as is easy to see,

P (a) = ϕ(b) + ϕ(b) + . . .+ 2m−2ϕ(b)− 2m−1ϕ(b) = 0

when m ≥ 2. This completes the proof of the theorem.

Remark 3.1.3. The fact that the iterated index is homotopy invariant enables one

to extend the definition of Iκ(F ) to continuous maps F : M → M , when M is still

a smooth manifold, by setting Iκ(F ) = Iκ(F̃ ) where F̃ is a smooth approximation

of F . Clearly, Theorem 3.1.2 still holds in this case.
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3.1.2 Iterated index of a germ

Consider now a germ of a C1-smooth map F at a fixed point x, which

is assumed to be isolated for all iterations F κ but not necessarily non-degenerate.

Thus the index I(F κ, x) is defined and homotopy invariant as long as x remains

uniformly isolated : I(F κs , x) = const when Fs varies smoothly or continuously with

parameter s and there exists a neighborhood U of x such that x is the only fixed

point of F κs in U for all s.

For a given κ, consider a sufficiently small perturbation F̃ such that all

κ-periodic points of F̃ are non-degenerate and set

Iκ(F, x) :=
∑

good O
I(F̃ κ,O),

where the sum is again taken over all good κ-periodic orbits O of F̃ . For instance,

when F and all its iterations are non-degenerate, we have Iκ(F, x) = I(F, x) when x

is even or when x is odd and κ is odd, and Iκ(F, x) = 0 otherwise. In what follows,

when the point x is clear from the context, we will use the notation I(F ) and Iκ(F ).

Theorem 3.1.4. We have

Iκ(F ) =
1

κ

∑
d|κ

ϕ(κ/d)I(F d). (3.4)

We omit the proof of this theorem; for it is word-for-word identical to the

proof of Theorem 3.1.2. An immediate consequence is

Corollary 3.1.5. The iterated index Iκ(F, x) is well defined and homotopy invariant

as long as x is a uniformly isolated fixed point of F κs .
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Remark 3.1.6. As in the case of maps of smooth manifolds (see Remark 3.1.3), the

definition of the iterated index Iκ(F, x) extends to continuous maps F and Theorem

3.1.4 remains valid. In what follows, however, the requirement that F is at least C1

becomes essential; cf. [64].

Assuming that x is isolated for all iterations F κ, consider the sequence of

indices ικ = I(F κ). This sequence is bounded (see [64]) and in fact periodic; see

[10] and also, e.g., [42] and references therein. (It is essential here that F is at least

C1-smooth.) Moreover, there exists a finite collection of positive integers N with

the following properties:

(i) 1 ∈ N ;

(ii) for any two elements q and q′ in N , the least common multiple lcm(q, q′) is

also an element of N ;

(iii) for any κ, we have ικ = ιq(κ), where q(κ) is the largest element in N dividing κ.

Thus the index sequence ικ is qmax-periodic, where qmax = maxN , and

takes values in the set {ιq | q ∈ N}. The collection N = N (F ) is generated in the

obvious sense by the degrees of the roots of unity occurring among the eigenvalues

of the linearization DFx and, in addition, 2 ∈ N when x is odd. (For instance,

if all eigenvalues of DFx are equal to 1, we have N = {1} and the sequence ικ is

constant; when none of the eigenvalues is a root of unity, i.e., x is non-degenerate

for all iterations, we have either N = {1} or N = {1, 2} depending on whether x is

even or odd.)
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Condition (iii) relating the sequence and the set N satisfying (i) and (ii)

is particularly important, and we say that a sequence aκ is subordinated to N when

(iii) holds: for any κ, we have aκ = aq(κ), where q(κ) is the largest element in N

dividing κ. (Note that (iii) is an easy consequence of the fact, implicitly contained

in the proof of the Shub–Sullivan theorem [64], that I(F κ) = I(F ) wherever κ is

relatively prime with all q ∈ N ; cf. [10, 26].)

Theorem 3.1.7. The sequence Iκ(F ) is subordinated to N .

In particular, it follows that Iκ(F ) is also periodic with period qmax.

Proof. The result is a formal consequence of Theorem 3.1.4. Namely, let aκ be any

sequence subordinated to a finite set N satisfying (i) and (ii), and let bκ be obtained

from aκ via (3.4):

bκ =
1

κ

∑
d|κ

ϕ(κ/d)ad.

Then we claim that bκ is also subordinated to N .

At this point the fact that the original sequences are integer-valued becomes

inessential, and it is more convenient to assume that the sequences in question are

real. We can view the transform {aκ} 7→ {bκ} as a map Φ from the vector space RN

of all real sequences subordinated to N to the vector space of all sequences. Our

goal is to show that Φ actually sends RN to itself.

Consider the basis δ(q), q ∈ N , of RN , where δ(q)κ = 1 when q|κ and

δ(q)κ = 0 otherwise. Then, as we will prove shortly, Φ is diagonal in this basis with

entries 1/q, i.e., Φ
(
δ(q)

)
= δ(q)/q. In particular, Φ: RN → RN and the theorem

follows.
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By definition,

Φ
(
δ(q)

)
κ

=
1

κ

∑
d|κ

ϕ(κ/d)δ(q)d.

The only non-zero terms on the right hand side are those with q|d. Thus, when κ is

not divisible by q, the right hand side is zero and hence Φ
(
δ(q)

)
κ

= 0. When q|κ,

set κ = qκ′ and d = qd′ as in the proof of Theorem 3.1.2. Then

Φ
(
δ(q)

)
κ

=
1

qκ′

∑
d′|κ′

ϕ(κ′/d′) =
1

q
,

where we again used (3.2). This completes the proof of the theorem.

Remark 3.1.8 (Integrality). In addition to being subordinated to N , the sequence

ικ = I(F κ) is known to satisfy some further conditions. Namely, [10, Theorem 2.2]

asserts that, in the notation from the proof of Theorem 3.1.7, the sequence ικ is an

integral linear combination of the sequences qδ(q), where q ∈ N . (Furthermore, the

coefficients must meet certain “sign-reversing” constraints if x is odd.) Moreover, it

follows that the mean index (the ϕ-index in the terminology of [10]) is an integer:

ῑ = lim
N→∞

1

N

N∑
κ=1

ικ =
1

qmax

qmax∑
κ=1

ικ ∈ Z;

see [10, Corollary 2.3].

Arguing as in the proof of Theorem 3.1.7, one can derive [10, Theorem

2.2] from the fact that the right hand side of (3.4) is an integer by the definition of

Iκ(F ), and conversely [10, Theorem 2.2] implies that the right hand side of (3.4) is

an integer since Φ(qδ(q)) = δ(q).

Example. Assume that 2n = 2 and F is elliptic with eigenvalues e±2πiα, where α

is rational: α = p/q with p and q relatively prime and q ≥ 2. Then it follows
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from [10, Theorem 2.2] or our Theorem 3.1.7 that I(F κ) = 1 − rq when q|κ and

I(F κ) = 1 otherwise. Thus Iκ(F ) = 1 − r when q|κ and Iκ(F ) = 1 otherwise. In

addition, when F is area preserving, I(F κ) ≤ 1 (see [56, 65]), and hence r ≥ 0 in

this case. There are no other restrictions on the index sequence when 2n = 2: all

values of r and q do occur. For instance, in the area preserving case, one can take

as F the composition of the rotation e2πi/q with the flow of the “monkey saddle”

Hamiltonian <(zqr). One immediate consequence of this result, otherwise entirely

non-obvious, is that I(F κ) 6= 0 for all κ, when I(F ) 6= 0. (Remarkably, under some

additional assumptions, these facts remain true for homeomorphisms; see [47, 48]

and references therein.)

3.2 Mean Euler characteristic

3.2.1 Notation and conventions

Let (M2n−1, ξ) be a closed contact manifold strongly fillable by an exact

symplectically aspherical manifold. In other words, we require (M, ξ) to admit a

contact form α such that there exists an exact symplectic manifold (W,ω = dαW )

with M = ∂W (with orientations) and αW |M = α and c1(TW ) = 0. Then the

linearized contact homology HC∗(M, ξ) is defined and independent of α; see, e.g.,

[6, 13]. Although HC∗(M, ξ) depends in general on the filling (W,ω), we suppress

this dependence in the notation. Moreover, when M is clear from the context, we

will simply write HC∗(ξ).

When α is non-degenerate, HC∗(ξ) is the homology of a complex CC∗(α)
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generated over Q by the good closed, not necessarily simple, Reeb orbits x of α,

where an orbit is said to be good/bad depending on whether the corresponding

fixed point of the Poincaré return map is good/bad. The complex is graded by the

Conley–Zehnder index up to a shift of degree by n − 3, i.e., |x| = µCZ(x) + n − 3.

The exact nature of the differential on CC∗(α) is inessential for our considerations.

The complex CC∗(α) further breaks down into a direct sum of sub-com-

plexes CC∗(α; γ) generated by the closed Reeb orbits in the free homotopy class γ

of loops in W . When γ 6= 0, fixing grading (or, equivalently, a way to evaluate the

Conley–Zehnder index of x) requires fixing an extra structure. A convenient choice

of such an extra structure in our setting is a non-vanishing section s, taken up to

homotopy, of the square of the complex determinant line bundle
(∧

C TW
)⊗2

; see

[15]. (The section s exists since c1(TW ) = 0.) With this choice, for every closed

Reeb orbit x, its Conley–Zehnder index µCZ(x) and the mean index ∆(x) are well-

defined. Namely, the indices of x are evaluated using a (unitary) trivialization of

x∗TW such that the square of its top complex wedge is s|x. Such a trivialization is

unique up to homotopy. Moreover, the mean index is homogeneous with respect to

the iteration, i.e., ∆(xκ) = κ∆(x). We refer the reader to [15] for a very detailed

discussion of the mean index in this context and for further references, and also

to [52, 62]. Here we only mention that the mean index ∆(x) measures the total

rotation of certain eigenvalues on the unit circle of the linearized Poincaré return

map of the Reeb flow at x. In general, the grading does depend on the choice of s.

Finally, let us also fix a collection Γ of free homotopy classes in W closed
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under iterations, i.e., such that γκ ∈ Γ whenever γ ∈ Γ. (For instance, we can have

Γ = {0} or Γ can be the entire collection of free homotopy classes.) In what follows,

we focus on the homology
⊕

Γ HC∗(ξ, γ). We again suppress the dependence of the

homology on s and Γ (and on W ) in the notation and HC∗(ξ).

Furthermore, assume that

(CH) there are two integers l+ and l− such that the space HCl(ξ) is finite-dimensional

for l ≥ l+ and l ≤ l−.

In all examples considered here the contact homology is finite dimensional in all

degrees and this condition is automatically met. Set

χ±(ξ) = lim
N→∞

1

N

N∑
l=l±

(−1)l dim HC±l(ξ), (3.5)

provided that the limits exist. We call χ±(ξ) the positive/negative mean Euler char-

acteristic (MEC) of ξ. (Invariants of this type for contact manifolds are originally

introduced and studied in [69, Section 11.1.3]; see also [15, 29, 59].) Note that χ±(ξ)

depends of course on Γ and also, when Γ 6= {0}, on s. (However, when, say, M is

simply connected, it is not hard to see that χ±(ξ) is independent of the filling under

some natural additional conditions on ξ; cf. [9, 45, 57].)

Assume now that the dimensions of the contact homology spaces remain

bounded as l→ ±∞:

dimQ HCl(ξ) ≤ const when |l| ≥ l±. (3.6)

Then, although the limit in (3.5) need not exist, one can still define χ±(ξ) as, e.g.,
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following [9],

χ±(ξ) =
1

2

lim sup
N→∞

1

N

N∑
l=l±

(−1)l dim HC±l(ξ) + lim inf
N→∞

1

N

N∑
l=l±

(−1)l dim HC±l(ξ)

 .
Finally, let us also point out that the machinery of contact homology used

in this section is yet to be fully put on a rigorous basis and the foundations of the

theory is still a work in progress; see [39, 40].

Remark 3.2.1. One can also use the cylindrical contact homology, when it exists, to

define the MEC of a contact manifold (M, ξ). The construction is similar to the one

for the linearized contact homology with obvious modifications. For instance, in the

cylindrical case, s is a non-vanishing section of the line bundle
(∧

C ξ
)⊗2

and the

collection Γ is formed by free homotopy classes of loops in M . Of course, the two

definitions give the same result when the cylindrical and contact homology groups

are equal or when the dimension of the contact complex is bounded as a function

of the degree and the MEC can be evaluated using the complex rather than the

homology. This is the case, for example, in the setting of Theorem 3.2.2.

Alternatively, the MEC can be defined using the positive equivariant sym-

plectic homology (see [9, 19]), resulting in an invariant (somewhat hypothetically)

equal to the one obtained using the linearized contact homology; [8]. Note that this

approach bypasses the foundational difficulties related to contact homology but usu-

ally results in somewhat more involved proofs and calculations; cf. Remark 3.2.9.

Finally, variants of the MEC exist and have been used for “classical” homology

theories; see, e.g., [51, 59, 72].
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3.2.2 Examples

In this section we briefly review, omitting the proofs, some examples where

the MEC is not difficult to determine.

Example (The Standard Sphere). For the standard contact structure ξ0 on S2n−1,

the contact homology is one-dimensional in every even degree starting with 2n− 2;

see, e.g., [6]. Thus, in this case, χ+ = 1/2 and χ− = 0. Alternatively, one can use

here the Morse–Bott approach as in Example 3.2.2; see [15].

Example (The Ustilovsky Spheres). In [68], Ustilovsky considers a family of contact

structures ξp on S2n−1 for odd n and positive p ≡ ±1 mod 8. For a fixed n, the

contact structures ξp fall within a finite number of homotopy classes, including the

class of the standard structure ξ0. The contact homology HC∗(ξp) is computed in

[68], and it is not hard to see that in this case

χ+(ξp) =
1

2

(
p(n− 1) + 1

p(n− 2) + 2

)
(3.7)

and χ−(ξp) = 0; see [45, 69] and also [15, 29] for a different approach. The right-

hand side of (3.7) is a strictly increasing function of p > 0. Hence, χ+ distinguishes

the structures ξp with p > 0. Note also that χ+(ξp) > χ+(ξ0) = 1/2 when p > 1

and χ+(ξ1) = 1/2. In particular, χ+ distinguishes ξp with p > 1 from the standard

structure ξ0.

Example (Pre-quantization Circle Bundles). Let π : M2n−1 → B be a prequantiza-

tion circle bundle over a closed strictly monotone symplectic manifold (B,ω). In

other words, M is an S1-bundle over B with c1 = [ω], i.e., we have π∗ω = dα, where
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α is a connection form on M and we use a suitable identification of the Lie algebra

of S1 and R; see, e.g., [31, Appendix A]. As is well known, α is a contact form.

Assume first for the sake of simplicity that the fiber x of π is contractible. Then,

for Γ = {0}, we have χ−(ξ) = 0 and

χ+(ξ) =
χ(B)

2 〈c1(TB), u〉
,

where u ∈ π2(B) is the image of a disk bounded by x in M and χ(B) is the

ordinary Euler characteristic of the base B. (Here we are using the cylindrical

contact homology of (M, ξ) rather than the linearized contact homology because

the natural filling of M by the disk bundle is not exact or even symplectically

aspherical.) This is an easy consequence, for instance, of the Morse–Bott version of

(3.9) and of the fact that, essentially by definition, the denominator is ∆(x); see [15,

Example 8.2]. Furthermore, since x is contractible, 〈ω, u〉 = 1 and B is monotone,

〈c1(TB), u〉 is the minimal Chern number N of B; cf. [5, p. 100]. To summarize,

we have

χ+(ξ) =
χ(B)

2N
. (3.8)

If x is not contractible, the above calculation still holds for Γ = {0}. More generally,

when the order r of the class [x] in π1(M) is finite, for the collection Γ generated by

[x] and any s, we have χ+(ξ) = rχ(B)/(2N). When B is negative monotone, the

roles of χ+ and χ− are interchanged. (See [9] for far reaching generalizations of this

calculation.)

Example (The Unit Cotangent Bundle of Sn). Let (M, ξ) be the unit cotangent

bundle ST ∗Sn with the standard contact structure ξ. A Riemannian metric on
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Sn gives rise to a contact form α on M and, for the standard round metric, α is a

prequantization contact form as in Example 3.2.2, where B = Grass+(2, n+1) is the

real “oriented” Grassmannian. (The closed geodesics are the oriented great circles

on Sn, i.e., the intersections of Sn with the oriented 2-planes in Rn+1.) It is not hard

to see that χ(B) = 2b(n+ 1)/2c. Furthermore, since the minimal Chern number N

of a (simply connected) hypersurface of degree d in CPm+1 is m + 2 − d and since

B is a complex quadric in CPn, we have N = n− 1; cf. [46, p. 88] and [61, Example

4.27 and Exercise 6.20]. Thus χ−(ξ) = 0 and χ+(ξ) = 1/2+1/(n−1) if n ≥ 3 is odd

and χ+(ξ) = 1/2+1/2(n−1) when n ≥ 2 is even. When n = 2 we have χ+(ξ) = 1/2

for Γ = {0} and χ+(ξ) = 1 for Γ = π1(M) = Z2. Alternatively, χ±(ST ∗Sn) can

be calculated directly via contact homology; see [69, 45]. Note that here one can

use either the cylindrical contact homology or the linearized contact homology with

the filling W of M by the unit ball bundle in T ∗Sn. (The only modification that is

needed in the latter case is that when n = 2, the fiber x is contractible in W and

χ+(ξ) = 1 for Γ = {0}.)

We refer the reader to [9, 15, 69, 45] for further examples.

3.2.3 Local formula for the MEC

Let now x be a (simple) closed orbit of the Reeb flow of α, which we assume

to be isolated for all iterations, i.e., all iterated orbits xκ are isolated. Note that

these orbits are not required to be non-degenerate. The Poincaré return map F of

x is a germ of a smooth map with an isolated fixed point which we also denote by

x. Clearly, the Poincaré return map of the iterated orbit xκ is just F κ.
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Since the fixed point x of F is isolated for all iterations, the iterated indices

Iκ(F, x) are defined for all κ and the sequence Iκ(F, x) is periodic with period qmax;

see Section 3.1.2.

Set the mean iterated index of x to be

σ(x) =
1

qmax

qmax∑
κ=1

Iκ(F, x) = lim
N→∞

1

N

N∑
κ=1

Iκ(F, x).

This is a diffeomorphism (and even homeomorphism) invariant of the flow near the

orbit x. When x and all its iterations are non-degenerate, we have σ(x) = I(F, x)

when x is even and σ(x) = I(F, x)/2 when x is odd. (A simple closed Reeb orbit is

said to be even/odd depending on whether the fixed point x is even/odd for F .)

Recall that (M2n−1, ξ) is a closed contact manifold strongly fillable by an

exact symplectically aspherical manifold and that a filling (W,ω), the homotopy

class of the section s and the collection Γ are fixed, and hence, in particular, we

have the graded space HC∗(ξ) and the mean indices of the orbits unambiguously

defined.

Theorem 3.2.2. Assume that the Reeb flow of α on (M2n−1, ξ) has only finitely

many simple periodic orbits x1, . . . , xr, not necessarily non-degenerate, in the col-

lection Γ. Then the conditions (CH) and (3.6) are satisfied with l+ = 2n − 3 and

l− = 3. Furthermore, the limit in (3.5) exists for both the positive and negative

MEC of (M, ξ), and

χ±(ξ) =
∑± σ(xi)

∆(xi)
, (3.9)

where
∑± stands for the sum taken over the orbits xi with positive/negative mean

index ∆(xi).
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This result generalizes the non-degenerate case of (3.9) proved in [29] and

inspired by [70] where such a formula was established for (S2n−1, ξ0). A variant

of (3.9) for convex hypersurfaces in R2n is proved in [72]. The general form of

(3.9) given here is literally identical to a MEC formula obtained in [41] (see [41,

Theorem 1.5]), and probably to the one established in [51] for (S2n−1, ξ0), as can

be seen by comparing the proofs. The main difference lies in the definitions of the

numerators: in [41], σ(xi) is defined as the MEC of the local contact homology of

xi, which is a contact invariant, while here σ(xi) is defined purely topologically as

a diffeomorphism and even homeomorphism invariant of the Poincaré return map.

(Likewise, in [51], the numerators are defined via certain local homology associated

with xi.) Finally note that the Morse–Bott version of (3.9) and its variant for the so-

called asymptotically finite contact manifolds are proved in [15]. (The Morse–Bott

version for the geodesic flows is originally established in [59].)

Remark 3.2.3. The condition of Theorem 3.2.2 that ω is exact on W can be slightly

relaxed. Namely, when Γ = {0}, it suffices to assume that ω|π2(W ) = 0. In general,

when Γ 6= {0}, it is enough to require ω to be atoroidal; cf. [28]. However, the

assumption that c1(TW ) = 0 or at least that c1(TW )|π2(W ) = 0 appears to be

essential.

3.2.4 Preliminaries and the proof

Our goal in this section is to prove Theorem 3.2.2. To this end, we need

first to recall several definitions and results concerning filtered and local contact

homology following mainly [41] and [28]. Throughout the section, we continue to
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work in the setting of Section 3.2.1. In particular, the contact manifold (M, ξ) is fixed

as are the background structures used in the definition of the contact homology (the

filling W , the section s and the collection Γ). A contact form, α, is always assumed

to support ξ, i.e., kerα = ξ.

The proof of Theorem 3.2.2 has non-trivial overlaps with the proof of its

counterpart in [41] – after all, the difference between the two results lies mainly in the

interpretation of (3.9) – although our argument is rather more concise. Moreover,

our proof is not entirely self contained and depends on [41] at two essential points.

One is the construction of the local contact homology and the other is one of its

properties. This is (LC3) stated in Section 3.2.4; see also [28, Theorem 3 and

Corollary 1]. We further elaborate on the relation between the two theorems and

show how, once some preliminary work is done, our Theorem 3.2.6 can be derived

from [41, Theorem 1.5] in Remark 3.2.6.

Filtered contact homology

Let us first assume that the contact form α is non-degenerate. The complex

CC∗(α) is filtered by the action

Aα(x) =

∫
x
α,

i.e., its subspace CCa
∗(α), where a ∈ R, generated by the orbits x with Aα(x) ≤ a

is a subcomplex. We refer to the homology HCa
∗(α) of this complex as the filtered

contact homology ; see, e.g., [28, 41]. Note that, in contrast with HC∗(ξ), these
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spaces depend on α. Whenever a ≤ b, we have a natural map

HCa
∗(α)→ HCb

∗(α)

induced by the inclusions of the complexes and, since homology commutes with

direct limits,

lim−→
a→∞

HCa
∗(α) = HC∗(ξ). (3.10)

This definition extends to degenerate forms by continuity. Below we will

discuss this definition in detail; for the construction is essential for what follows and

it involves certain non-obvious (to us) nuances. Let us start, however, by recalling

some standard facts and definitions.

The action spectrum S(α) of α is the collection of action values Aα(x),

where x ranges through the set of closed Reeb orbits of α (in the class Γ). This is

a closed zero-measure subset of R.

For any two contact forms α and α′, giving rise to the same contact struc-

ture ξ, write α′ > α when α′/α > 1, i.e., α′ = fα with f > 1. This is clearly a

partial order, and, when both forms are non-degenerate, we have a homomorphism

HCa
∗(α
′) → HCa

∗(α) induced by the natural cobordism in the symplectization of ξ

between α and α′.

Furthermore, we will need the following invariance property of filtered con-

tact homology, stated in a slightly different form in [28, Proposition 5]: Let αs,

s ∈ [0, 1], be a family of contact forms such that α0 and α1 are non-degenerate and

a 6∈ S(αs) for all s. Then the contact homology spaces HCa
∗(α0) and HCa

∗(α1) are iso-

morphic and the isomorphism is independent of the family αs as long as a 6∈ S(αs).
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Furthermore, assume that the family αs is decreasing, i.e., αs′ > αs when s′ < s.

Then the natural map HCa
∗(α0) → HCa

∗(α1) is an isomorphism. This proposition

can be proved in exactly the same way as its Floer homological counterparts; see,

e.g., [3, 22, 71].

Let now α be a possibly degenerate contact form and a 6∈ S(α). Set

HCa
∗(α) := HCa

∗(α̃),

where α̃ is a non-degenerate C∞-small perturbation of α, i.e., α̃ is non-degenerate

and C∞-close to α. By the invariance property of the filtered contact homology, for

any two non-degenerate perturbations sufficiently close to α the homology groups

on the right hand side are canonically isomorphic, and hence the left hand side is

well defined. Alternatively, we could have set

HCa
∗(α) := lim−→

α̃>α

HCa
∗(α̃),

where the limit is taken over all non-degenerate forms α̃ > α. These two definitions

are obviously equivalent. In contrast with HC∗(ξ), the graded vector spaces HCa
∗(α)

are automatically finite dimensional:
∑

l dim HCa
l (α) <∞.

With this definition, we have a well-defined map HCa
∗(α
′) → HCa

∗(α)

for any two, not necessarily non-degenerate, forms α′ > α, and hence the non-

degeneracy requirement on α0 and α1 in the invariance property can be dropped.

Now, however, once α is not assumed to be non-degenerate, (3.10) requires a proof.

Implicitly, this result is already contained in [41].

Lemma 3.2.4. For any, not necessarily non-degenerate form α, (3.10) holds as

a→∞ through R \ S(α).
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Proof. Fix a sequence ai → ∞ with ai 6∈ S(α) and consider a decreasing sequence

of non-degenerate forms αj C
∞-converging to α from above, i.e., we have

α1 > α2 > · · · > α.

These sequences give rise to the maps

. . .→ HCai
∗ (αj)→ HCai

∗ (αj+1)→ . . . . (3.11)

In addition, of course, we also have the homomorphisms

. . .→ HCai
∗ (αj)→ HC

ai+1
∗ (αj)→ . . . (3.12)

commuting with the maps (3.11). After passing to the limit as i → ∞, the maps

(3.11) induce the identity map on HC∗(ξ).

Set

L = lim−→
ai→∞

HCai
∗ (αi)

with respect to the “diagonal” maps

δi : HCai
∗ (αi)→ HC

ai+1
∗ (αi+1).

To prove the lemma, it suffices to show that L ∼= HC∗(ξ).

Let u ∈ HC∗(ξ). By (3.10), there exists i(u) such that u is the image of

ui(u)1 ∈ HC
ai(u)
∗ (α1). Applying the maps (3.11) and (3.12) to ui(u)1, we obtain a

double sequence uij ∈ HCai
∗ (αj) where i ≥ i(u). Set vi = uii, i ≥ i(u). Clearly,

δi(vi) = vi+1, and thus the sequence vi gives rise to an element v ∈ L. As a result,

we have constructed a homomorphism

Φ: HC∗(ξ)→ L, Φ(u) = v.
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Conversely, consider a sequence vi ∈ HCai
∗ (αi) with i ≥ i(v) such that

δi(vi) = vi+1. The image u of vi in HC∗(ξ) is independent of choice of vi, and we

have a map

Ψ: L→ HC∗(ξ), Ψ(v) = u.

Essentially by the definition, ΨΦ = 1.

Finally let HC
(a, b)
∗ (α), where a < b, be the homology of the quotient com-

plex CCb
∗(α)/CCa

∗(α), provided that α is non-degenerate. When a < b are outside

S(α) this definition again extends to all α by continuity. In any event, we obviously

have the exact sequence

. . .→ HCa
∗(α)→ HCb

∗(α)→ HC
(a, b)
∗ (α)→ . . . .

Local contact homology

Let x be an isolated, but not necessarily simple or non-degenerate, closed

Reeb orbit of α. Consider a small non-degenerate perturbation α̃ of α. Under

this perturbation x splits into, in general, several non-degenerate orbits x̃1, . . . , x̃r

with nearly the same period (i.e., action) and mean index as x. The vector space

CC∗(α̃, x) generated over Q by the good orbits in this collection can be equipped

with a differential. The resulting homology, denoted by HC∗(x), is independent

of the perturbation α̃; see [41]. We call HC∗(x) the local contact homology of x.

These complexes and the homology spaces are graded just as the ordinary contact

homology, i.e., |x̃i| = µCZ(x̃i) + n− 3.
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Example. Assume that x is non-degenerate. Then HC∗(x) is equal to Q and con-

centrated in degree |x| when x is good and HC∗(x) = 0 when x is bad.

Example. Assume that x is simple. Then HC∗(x) is isomorphic up to a shift of

degree to the local Floer homology HF∗(F ) of the Poincaré return map F of x.

See [28, 41] for the proof of this fact, which can also be established by repeating

word-for-word the proof of [14, Proposition 4.30], and, e.g., [23, 26, 55] for a detailed

discussion of local Floer homology.

Example. When x is not simple, the relation between the local contact homology and

the Floer homology is more involved. Namely, HC∗+n−3(yκ) = HFZκ
∗ (F κ), where F

is the Poincaré return map of a simple orbit y and the right hand side stands for the

Zκ-equivariant local Floer homology; [28, Theorem 3]. The proof of this theorem

depends on the machinery of multivalued perturbations and is only outlined in [28].

Although we find this relation illuminating, the present paper does not rely on this

result.

The proof of Theorem 3.2.2 makes use of several properties of local contact

homology, which we now recall following [28, 41]:

(LC1) HC∗(x) is finite dimensional and supported in the range of degrees [∆(x) −

2,∆(x) + 2n− 4], i.e., HC∗(x) vanishes when ∗ is outside this range.

(LC2) Assume that x = yκ, where y is a simple closed Reeb orbit, and let F be the

Poincaré return map of y. Then, in the notation of Section 3.1.2,

∑
(−1)l dim HCl(x) = Iκ(F, y).
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(LC3) For all iterations κ of a simple orbit x, the (total) dimension of the graded

vector space HC∗(x
κ) is bounded by a constant independent of κ, provided

that xκ remains isolated.

(LC4) Assume that c is the only point of S(α) in the interval [a, b] and that all closed

Reeb orbits with action c are isolated. (Hence, there are only finitely many

such orbits.) Then

HC
(a, b)
∗ (α) =

⊕
Aα(x)=c

HC∗(x).

Here only (LC3) is not straightforward to prove. The assertion (LC1)

follows from the facts that

|µCZ(x)−∆(x)| ≤ n− 1

for any closed Reeb orbit on a (2n−1)-dimensional contact manifold and that ∆(x)

depends continuously on x; see, e.g., [52, 62]. The property (LC2) is an immediate

consequence of the definition, and (LC4) follows from the fact that a holomorphic

curve in the symplectization with zero ω-energy must be the cylinder over a Reeb

orbit; see, e.g., [7, Lemma 5.4]. Finally, (LC3) is a far reaching generalization a

theorem of Gromoll and Meyer, [30]. This result is established in [41, Section 6] as a

consequence of a theorem from [26], asserting a similar upper bound for local Floer

homology. (Note that (LC3) also follows from [28, Theorem 3 and Corollary 1] stated

in Example 3.2.4 above. An analogue of (LC3) for (non-equivariant) symplectic

homology is proved in [55].)
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Proof of Theorem 3.2.2

In the proof, we will focus on the case of χ+; for its negative counterpart,

χ−, can be handled in a similar fashion. Thus let x1, . . . , xr be the orbits of α with

positive mean index: ∆(xi) > 0. Set l+ = 2n − 3. By (LC1), this is the lowest

degree for which the orbits with ∆ = 0 cannot contribute to the homology.

Our first goal is to prove (3.6) and (CH). To this end, observe that we have

the following version of the Morse inequalities:

dim HCl(α) ≤
∑

dim HCl(x), (3.13)

where, when l ≥ l+, the sum is taken over all orbits x = xκi with ∆(x) > 0. This is

a consequence of (LC4) and the long exact sequence for filtered contact homology.

Since the mean index is homogeneous, i.e., ∆(x) = κ∆(xi), we see that when κ is

large the orbits xκi do not contribute to HCl(α) or, to be more precise, to the right

hand side of (3.13), due to (LC1) again. (It suffices to take κ > (l+ 2)/∆(xi) here.)

In particular, the right hand side of (3.13) is finite when l ≥ l+. Furthermore, by

(LC3), the contribution of xκi to HCl(α) is bounded from above and the bound is

independent of l. This proves (3.6): dim HCl(α) ≤ const, where the constant is

independent of l ≥ l+.

Let us now prove (3.9) and, particular, the fact that χ+(ξ) is defined. Set

χ(x) =
∑
l

(−1)l dim HCl(x).

Thus, in the notation of (LC2), χ(x) = Iκ(F ) where x = yκ and F is the Poincaré
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return map of y. Next note that for any a 6∈ A(α), we have

∑
l

(−1)l dim HCa
l (α) =

∑
Aα(x)<a

χ(x), (3.14)

where the sum is now over all closed Reeb orbits with action less than a, but not

as in (3.13) over only the iterations of the orbits xi. This is again an immediate

consequence of (LC2) and (LC4) and the long exact sequence for filtered contact

homology.

When the summation is restricted to the degrees l+ ≤ l ≤ N , a variant of

(3.14) still holds up to a bounded error:∣∣∣ N∑
l=l+

(−1)l dim HCa
l (α)−

∑
χ(xκi )

∣∣∣ ≤ const, (3.15)

where const on the right is independent of a and N and the second sum is taken

now over the orbits xκi with Aα(xκi ) < a and ∆(xκi ) ≤ N . Just as (3.13) and (3.14),

this readily follows from (LC2) and (LC4) and the long exact sequence for filtered

contact homology.

Let us divide (3.15) by N and let a → ∞ and then N → ∞. By Lemma

3.2.4, the first sum will then converge to χ+(ξ), and hence

χ+(ξ) =
∑
i

lim
N→∞

1

N

∑
∆(xκi )≤N

χ(xκi ),

provided that the limit on the right hand side exists. Since ∆(xκi ) = κ∆(xi), we

also have ∑
∆(xκi )≤N

χ(xκi ) =
1

∆(xi)

N∑
κ=1

χ(xκi ) +O(1),

as N →∞. As a result, by the definition of σ(xi) and (LC2),

lim
N→∞

1

N

∑
∆(xκi )≤N

χ(xκi ) =
σ(xi)

∆(xi)
,
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which concludes the proof of the theorem. �

Remark 3.2.5. To guarantee the existence of the positive/negative MEC and prove

(3.6) for positive/negative range, it suffices to assume only that the collection of

simple Reeb orbits with positive/negative mean index is finite.

Remark 3.2.6. By (LC2) and Theorem 3.1.7, the function κ 7→ χ(xκ) is subordinated

to the collection N (F ) associated with the Poincaré return map F of x as in Section

3.1.2. Furthermore, recall that the local MEC of x is defined in [41] as

χ̂(x) = lim
N→∞

1

N

N∑
κ=1

χ(xκ).

By (LC2), we have χ̂(x) = σ(x). (In particular, the limit in the definition of χ̂(x)

exists.) With these observations in mind, our Theorem 3.2.2 can be easily obtained

as a consequence of [41, Theorem 1.5].

3.2.5 Asymptotic Morse inequalities

The argument from the previous section lends itself readily to a proof of

the asymptotic Morse inequalities. Namely, in the setting of Section 3.2.1, assume

that ξ satisfies (HC) and set

β±(ξ) = lim sup
N→∞

1

N

N∑
l=l±

dim HC±l(ξ).

Likewise, when x is a simple closed Reeb orbit such that all iterations xκ are isolated,

set

β(x) = lim sup
N→∞

1

N

N∑
κ=1

dim HC∗(x
κ).

This is finite number by (LC3); in fact, one can expect that in this case the limit

exists; cf. Remark 3.2.8.
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Theorem 3.2.7. Assume that the Reeb flow of α on M2n−1 has only finitely many

simple periodic orbits x1, . . . , xr, not necessarily non-degenerate, in the collection Γ.

Then β±(ξ) is finite and moreover

β±(ξ) ≤
∑± β(xi)

∆(xi)
,

where
∑± stands for the sum taken over the orbits xi with positive/negative mean

index ∆(xi).

This theorem can be proved exactly in the same way as Theorem 3.2.2.

The non-degenerate case of this result is pointed out in [29, Remark 1.10]. Note

that, as an immediate consequence of Theorem 3.2.7, we obtain a theorem from [41]

(cf. [30, 55]) asserting that α must have infinitely many closed Reeb orbits when

dim HCl(ξ) is unbounded as a function of ±l ≥ l±.

Remark 3.2.8. At this stage, very little is known about the sequence dim HC∗(x
κ),

except that this sequence is bounded, or about the “mean Betti number” β(x). For

instance, recall that the sequence χ(xκ) = Iκ(F ) is periodic by Theorem 3.1.7 and

(LC2), and hence σ(x) is rational. Moreover, a similar result holds for the local

Floer homology. In fact, as is easy to see from the proof of [26, Theorem 1.1],

the sequence dim HF∗(x
κ), where x is an isolated periodic orbit of a Hamiltonian

diffeomorphism, is still subordinated to N . We conjecture that this is also true for

dim HC∗(x
κ), and hence β(x) ∈ Q. However, neither of these facts have been proved

yet.

Remark 3.2.9 (Variations). Variants of Theorems 3.2.2 and 3.2.7 hold for cylindrical

contact homology, when the latter is defined, with straightforward modifications to
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the setting and virtually the same proofs; cf. Remark 3.2.1.

One can also expect the analogues of these theorems to hold for, say, the

(positive) equivariant symplectic homology or for the S1-equivariant Morse homol-

ogy of the energy functional on the space of loops on Riemannian or Finsler manifold,

or for the equivariant Morse-type homology associated with certain other function-

als on loop spaces; see [9, 19, 51, 59, 72] for some relevant results. However, now

the situation is more delicate because the corresponding complexes are not directly,

by definition, generated by the (good) orbits and, strictly speaking, even in the

non-degenerate case an extra step in the proof is needed to relate the homology and

the orbits. For instance, in the non-degenerate analogue of Theorem 3.2.2 for either

of these “homology theories”, the contribution of an orbit xκ is equal to the Euler

characteristic of the infinite lens space S2∞−1/Zκ with respect to a certain local

coefficient system; cf. [4, Lecture 3]. This contribution is trivial when xκ is bad and

equal to ±1 when the orbit is good. With this in mind, the proof of Theorem 3.2.2

should go through with mainly notational changes except for an analogue of (LC3),

which now requires a proof; cf. [41] and [55].

3.3 Closed Reeb orbits on S3

Our goal in this section is to reprove the following

Theorem 3.3.1 ([11, 28, 50]). Let α be a contact form on S3 such that kerα is the

standard contact structure. Then the Reeb flow of α has at least two closed orbits.

In fact, the result proved in [11] is much more general and holds for all
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closed contact 3-manifolds; the proof uses the machinery of embedded contact ho-

mology. The proofs in [28, 50] both rely on a theorem establishing the “degenerate

case of the Conley conjecture” for contact forms and more specifically asserting

that the presence of one closed Reeb orbit of a particular type (the so-called SDM)

implies the existence of infinitely many closed Reeb orbits. This result holds in

all dimensions and is stated explicitly below. Another non-trivial, and in this case

strictly three-dimensional, counterpart of the argument in [28] comes from the the-

ory of finite energy foliations (see [37, 38]), while the argument in [50] uses, also in

a non-trivial way, a variant of the resonance relation formula from [51]. Here, we

give a very simple proof of Theorem 3.3.1 establishing it as a consequence of our

Theorem 3.2.2 and the “Conley conjecture” type result mentioned above.

To state this result, we need to recall some definitions. Let Ft, t ∈ [0, 1], be

a family of germs of Hamiltonian diffeomorphisms of R2n fixing the origin 0 ∈ R2n

and generated by the germs of Hamiltonians Ht depending on t ∈ S1. Set F = F1

and let us assume that the origin is an isolated fixed point of F .

Denote by ∆(F ) ∈ R and HF∗(F ) the mean index and, respectively, the

local Floer homology of F over Q. Again, we refer the reader to [23, 26, 55] for

the definition of the latter. Here we only note that both of these invariants depend

actually on the homotopy type (with fixed end points) of the entire family Ft.

However, changing this family to a non-homotopic one, results in a shift of ∆(F )

and of the grading of HF∗(F ) by the same even number. Furthermore, HF∗(F )

is supported in the range [∆(F ) − n,∆(F ) + n], i.e., HF∗(F ) vanishes for degrees
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outside this range. When 2n = 2, HF∗(F ) is supported in at most only one degree;

[26]. Finally, analogously to (LC2) and essentially by definition, we have

I(F ) = (−1)n
∑

(−1)l dim HFl(F ).

The fixed point of F , the origin, is said to be a symplectically degenerate

maximum (SDM) of F if ∆(x) ∈ Z and HF∗(F ) does not vanish at the upper

boundary of its possible range, i.e., HF∆(x)+n(F ) 6= 0. This is clearly a feature of

the time-one map F , independent of the homotopy type of the family Ft. Note

also that in this case F is necessarily totally degenerate, i.e., all eigenvalues of DF

are equal to 1, although DF need not be the identity. (Clearly, ∆(F ) ∈ Z when

F is totally degenerate; the converse, however, is not true without homological

requirements.) Furthermore, then HF∆(x)+n(F ) = Q and HF∗(F ) = 0 in all other

degrees. (See [23, 26] for this and other results and a detailed discussion of SDM’s.)

Example. Assume that H on R2n is autonomous, has an isolated critical point at the

origin and this critical point is a local maximum, and that the Hessian d2H at the

origin is identically zero. (More generally, it suffices to assume that the eigenvalues

of d2H with respect to the symplectic form are all zero.) Then the origin is an SDM

of the time-one map F generated by H.

Returning to Reeb flows, we say that an isolated closed Reeb orbit x is

an SDM if the corresponding fixed point of the Poincaré return map F of x is

an SDM. (This is equivalent to requiring that ∆(x) ∈ Z and HCl(x) is Q when

l = ∆(x) + 2n − 4 and zero otherwise; see [28] for this and other related results.)

Note that, although the grading of HF∗(x) depends on some extra choices, e.g., a

72



trivialization of ξ along x, the notion of SDM is independent of these choices.

In the setting of Section 3.2.1, we have

Theorem 3.3.2 ([28]). Let (M2n−1, kerα) be a contact manifold admitting a strong

exact symplectic filling (W,ω) such that c1(TW ) = 0. Assume that the Reeb flow of

α has an isolated simple closed Reeb orbit x which is an SDM. Then the Reeb flow

of α has infinitely many periodic orbits.

Remark 3.3.3. The proof of Theorem 3.3.2 is a straightforward, although lengthy

and cumbersome, adaptation of the proof of the degenerate case of the Conley

conjecture in [24]. In fact, in [28], the theorem is established under somewhat less

restrictive conditions. Namely, it suffices to require that ω|π2(W ) = 0, when x is

contractible (rather than that ω is exact) and that ω is atoroidal in general; cf.

Remark 3.2.3.

Replacing the upper boundary of the range by the lower boundary in the

definition of an SDM, we arrive at the notion of a symplectically degenerate mini-

mum (SDMin). Thus F has an SDMin at the origin if and only if ∆(F ) ∈ Z and

HF∆(F )−n(F ) 6= 0. This notion naturally arises in dynamics (see [34] and also [28,

Remark 1]), and Theorem 3.3.2 holds with an SDM replaced by an SDMin.

Just as the local Floer homology in dimension two, the local contact ho-

mology of an isolated closed Reeb orbit x on a 3-manifold is concentrated in at most

one degree. Hence, in this case we have the following mutually exclusive possibilities

when x is isolated and degenerate, but not necessarily simple:

• SDM: HC∆(x)(x) 6= 0 and x is an SDM,

73



• SDMin: HC∆(x)−2(x) 6= 0 and x is an SDMin,

• Saddle or “Monkey Saddle”: HC∆(x)−1(x) 6= 0,

• Homologically Trivial: HC∗(x) = 0.

All of these cases do occur. Furthermore, for any isolated iterated closed Reeb orbit

yκ (not necessarily non-degenerate), we have

(−1)l dim HCl(y
κ) = Iκ(F ), (3.16)

where F is the Poincaré return map of y and l is the degree where the cohomology

of yκ is supported. (Note that HC∗(y
κ) = 0 if and only if Iκ(F ) = 0.) This

is an immediate consequence of (LC2) and again the fact that the cohomology is

supported in only one degree.

Proof of Theorem 3.3.1. Arguing by contradiction, assume that the Reeb flow of α

on (S3, ξ0) has only one closed simple orbit x. We will prove that then x is an SDM,

and hence the flow has infinitely many periodic orbits by Theorem 3.3.2. Applying

Theorem 3.2.2 and Example 3.2.2, we have

σ(x)

∆(x)
=

1

2
, (3.17)

where ∆(x) > 0. Therefore, σ(x) > 0.

Furthermore, recall that HCl(ξ0) = Q when l ≥ 2 is even and HCl(ξ0) = 0

otherwise; see, e.g., [6].

The orbit x is necessarily elliptic: all Floquet multipliers, i.e., eigenvalues

of DF , lie on the unit circle. Indeed, if x is hyperbolic and even, we have σ(x) = −1,
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which is impossible. If x is hyperbolic and odd, we have σ(x) = 1/2 and ∆(x) = 1.

Furthermore, all orbits xκ are non-degenerate and µCZ(xκ) = κ. Since the even

iterations of x are bad orbits, the complex CC∗(α) is generated by the orbits xκ,

where κ is odd, with |xκ| = κ− 1, which is also impossible since then HC0(ξ0) = Q.

With x elliptic, write ∆(x) = 2m+ 2α, where m is a non-negative integer

and α ∈ [0, 1). By the definition of the mean index, e±2πiα is an eigenvalue of F .

From (3.17) we see that α is necessarily rational. Set α = p/q, where q ≥ 2 and

q > p ≥ 0, and p and q are mutually prime. (In particular, xq is degenerate.) To

summarize, we are in the setting of Example 3.1.2: Iκ(F ) = 1 − r for some r ≥ 0

when q|κ, and Iκ(F ) = 1 otherwise. We conclude that

σ(x) = 1− r

q
and ∆(x) = 2m+

2p

q
,

and (3.17) amounts to

1− r

q
= m+

p

q
,

where m, r and p are non-negative and q ≥ 2. This condition can only be satisfied

when m = 0 or m = 1.

Let us first examine the case m = 0, which is exactly the point where in

[28] we had to rely on the results from [37, 38]. Then p > 0 (for otherwise ∆(x) = 0)

and p+ r = q. In particular, r < q.

To rule out this case, observe first that p = 1. Indeed, we have |xκ| = 0 as

long as κp/q < 1. If p ≥ 2, the first degree jump occurs when κp/q becomes greater

than 1 and the degree increases to 2. The next jumps occur when κp/q moves over

the subsequent integers, while xκ is still nondegenerate, or when κ = q. In the
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latter case, xq is degenerate, but ∆(xq) ≥ 4 since κ ≥ 2 and p ≥ 2, and xq cannot

contribute to the homology in degree 0. We conclude that again HC0(α) 6= 0 when

p > 1, which is impossible.

Thus p = 1. The degrees of xκ form a sequence

|xκ| = 0, . . . , 0︸ ︷︷ ︸
q−1

, ∗, 2, . . . , 2︸ ︷︷ ︸
q−1

, ∗, . . . ,

where the undefined degrees of the degenerate iterations |xκ| are entered as the

asterisks. It is clear, however, that HC∗(x
q) must be concentrated in degree one, to

cancel the contribution of previous iterations to degree zero, and hence r ≥ 1.

It follows from (3.16) that HC∗(x
κ) = Qr−1, concentrated in degree 2κ/q−

1, when q|κ and that HC∗(x
κ) = Q, concentrated in degree 2bκ/qc, otherwise, i.e.,

when xκ is non-degenerate. Hence, all iterates xκ with κ ≤ q − 1 contribute to

degree 0 while the iterates xκ with κ > q contribute to the degrees greater than or

equal to 2:

HC∗(x
κ) = Q0, . . . ,Q0︸ ︷︷ ︸

q−1

, Qr−1
1 , Q2, . . . ,Q2︸ ︷︷ ︸

q−1

, Qr−1
3 , . . . ,

where the subscripts on the right hand side indicate the degree. To ensure that

HC0(α) = 0, we must have q − 1 ≤ r − 1, by the long exact sequence for filtered

contact homology, i.e., q ≤ r, which is impossible since r < q as stated above.

It follows now that m = 1 and p = 0 = r. Therefore, the orbit x itself

is degenerate and ∆(x) = 2. Clearly, since HC∗(x) is concentrated in at most one

degree, the fact that HC2(ξ0) = Q implies that HC2(x) = Q, and hence x is an

SDM. This concludes the proof of the theorem.
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Remark 3.3.4. Let α be a contact form on (S3, ξ0) invariant under a contact involu-

tion τ . (For instance, this is the case when α comes from a symmetric star-shapped

embedding of S3 into R4 and τ is the antipodal involution or when α is the lift of

a contact form on RP3 supporting the standard contact structure.) Then the Reeb

flow of α cannot have exactly two simple Reeb orbits “swapped” by τ . Indeed,

assume the contrary and denote the orbits by x and τ(x). Then these orbits have

the same local invariants: the same mean index, the same mean iterated index and

the same local contact homology. Now, arguing as in the proof of Theorem 3.3.1,

but without relying on Theorem 3.3.2, it is not hard to show that this is impossible.

However, as the example of an irrational ellipsoid in R4 shows, α can have exactly

two simple orbits each of which is invariant under τ . Projecting the irrational ellip-

soid contact form to RP3 = ST ∗S2, we obtain an asymmetric Finsler metric on S2

with exactly two geodesics; see [43, 78] and also [32].

As an easy application of Theorem 3.3.1, we have

Corollary 3.3.5. Let M be a fiberwise star-shaped (with respect to the zero section)

hypersurface in T ∗S2. Then M carries at least two closed characteristics.

When M is fiberwise convex, the Reeb flow is just the geodesic flow of a

(not necessarily symmetric) Finsler metric on S2. Thus, in particular, it follows

that any Finsler metric on S2 has at least two simple closed geodesics. This result

is originally proved in [2]. Of course, Corollary 3.3.5 also immediately follows from

the main theorem of [11].

Proof. The hypersurface M is of contact type and contactomorphic to RP3 = ST ∗S2
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with the standard contact structure ξ0 and some contact form α. Arguing by contra-

diction, assume that (M,α) carries only one simple closed Reeb orbit x. We claim

that x is not contractible.

This is a standard fact which can be established in a variety of ways. For

instance, this is a consequence of Remark 3.3.4. Alternatively, this follows from

the fact that the Reeb flow of any such form α must have non-contractible orbits

because the cylindrical contact homology of ST ∗S2 is non-zero for the non-trivial

free homotopy type of loops in RP3. The latter assertion can be easily proved by

examining the indices of the closed orbits for the form coming from an irrational

ellipsoid in R4 or by using the Morse–Bott techniques; see, e.g., [6, 69, 45]. (For

Finsler metrics on S2 this is, of course, a well-known result in the standard calculus

of variations: the orbit in question is the energy minimizer within the fixed non-

trivial free homotopy class; cf. [4].)

Finally, since x is not contractible, it lifts to one orbit on S3 and we

obtain a contact form on S3 with only one closed Reeb orbit, which is impossible

by Theorem 3.3.1.
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