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Abstract

Pseudo-rotations and symplectic topology

by

Erman Çineli

In the context of symplectic dynamics, pseudo-rotations are Hamiltonian dif-

feomorphisms with finite and minimal possible number of periodic points. These maps

are of interest in both dynamics and symplectic topology. In this thesis, principally

in relation with the Conley conjecture, we study pseudo-rotations from two different

perspectives. In the first part, we prove a variant of the Chance–McDuff conjecture.

We show that a closed monotone symplectic manifold, which admits a non-degenerate

pseudo-rotation, must have a deformed quantum Steenrod square of the top degree el-

ement and hence non-trivial holomorphic spheres. In the second part, we give a simple

proof of a slightly weaker version of a recent theorem by Shelukhin which extends Franks’

“two-or-infinitely-many” theorem to Hamiltonian diffeomorphisms in higher dimensions.

More precisely, we show that for a certain class of closed monotone symplectic manifolds

(e.g. CPn) pseudo-rotations are the only strongly non-degenerate counterexamples to

the Conley conjecture. In addition, we show that every non-degenerate pseudo-rotation

of CP2 is balanced by using equivariant pair-of-pants product and quantum Steenrod

squares.
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I would like to thank Başak Gürel for her guidance and support starting from

very early stages of my graduate studies. I am grateful to Başak for her generous help
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Chapter 1

Introduction

In this thesis, principally in connection with the Conley conjecture, we study

pseudo-rotations from two different perspectives. The Conley conjecture asserts that

for a broad class of closed symplectic manifolds every Hamiltonian diffeomorphism, in

other words, every time-one map in a possibly time-dependent Hamiltonian system,

has infinitely many simple (un-iterated) periodic points. It is easy to see that the

conjecture does not hold unconditionally: an irrational rotation of S2 ⊂ R3 about the

z-axis has only two periodic points – the North and the South Poles. More generally,

the conjecture fails for all manifolds admitting a Hamiltonian circle (or torus) action

with isolated fixed points – a generic element of the circle (or the torus) gives rise to a

Hamiltonian diffeomorphism with finitely many periodic points.

The state of the art result proved in [GG17] and then by a different method in

[Çi] is that when a closed symplectic manifold (M,ω) admits a Hamiltonian diffeomor-

phism with finitely many periodic points, there exists a class A ∈ π2(M) such that the
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integrals 〈[ω], A〉 > 0 and 〈c1(TM), A〉 > 0. For example, the Conley conjecture holds

when ω|π2(M) = 0 or when M is negative monotone. For many manifolds the conjec-

ture is also known to hold C∞-generically (see [GG09b, Su21a]); we refer the reader to

[GG15] for a detailed survey and further references.

The failure of the Conley conjecture for a manifold is expected to have strong

symplectic topological consequences (in addition to the topological consequences men-

tioned above). For instance, in [McD], it is shown that a symplectic manifold admitting

a Hamiltonian circle action is uniruled (has a non-zero Gromov–Witten invariant with

one of the homology classes being the point class). The outstanding problem in this

direction, inspired by the results in [McD] and referred to as the Chance–McDuff con-

jecture, is that whenever the Conley conjecture fails some Gromov-Witten invariants of

the manifold are non-zero.

In every known counterexample to the Conley conjecture, all periodic points

are strongly non-degenerate fixed points and the number of them is equal to the sum

of the Betti numbers of the manifold. This is the minimal number allowed by the

Arnold conjecture. Such maps are examples of non-degenerate pseudo-rotations. In the

literature, there are a few slightly different definitions of pseudo-rotations, all reflecting

the same condition that the map must have the least possible number of periodic orbits;

[ÇGG19, Sh19a, Sh20]. In this thesis we define a non-degenerate pseudo-rotation as a

Hamiltonian diffeomorphism ϕ such that all iterates ϕk, k ∈ N, are non-degenerate and

the Floer differential (over F2 = Z2) vanishes for all ϕk. (Here and throughout the

thesis, unless stated otherwise, all cohomology groups are with F2-coefficients.) These
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are rare but very interesting maps. For instance, some manifolds (e.g., CPn) admit

pseudo-rotations with finite number of ergodic measures; see [AK, FK, LeRS]. These

pseudo-rotations are constructed from true rotations using the conjugation method and

hence they are balanced; see [GG18b]. It is expected that, [GK], all pseudo-rotations

have this property. For instance, in [GG18b] it was proved that most pseudo-rotations

of CP2 are balanced with some possible exceptions called ghost pseudo-rotations. In

this thesis, using quantum Steenrod squares from [Wi18, Wi20], we show that all non-

degenerate pseudo-rotations of CP2 are balanced.

Recently, symplectic topological methods have been employed to study the

dynamics of pseudo-rotations and its connections with symplectic topological properties

of the underlying manifold in all dimensions; see [AS, Ban, Br15a, Br15b, ÇGG19,

ÇGG20a, GG18a, GG18b, LeRS, Sh19b, Sh20]. In particular, several variants of the

Chance–McDuff conjecture have been established for pseudo-rotations. In [ÇGG19] it

was proved that a weakly monotone symplectic manifold with minimal Chern number

N > 1, admitting a pseudo-rotation ϕ, must have deformed quantum product and,

in particular, non-vanishing Gromov–Witten invariants, under certain additional index

assumptions on ϕ. These extra assumptions appear to be satisfied for most, but certainly

not all, pseudo-rotations. Simultaneously and independently, in [Sh20], along with some

other results the quantum Steenrod square of the top degree class was shown to be

deformed for monotone symplectic manifolds M2n with Poincaré duality property (e.g.,

when N ≥ n + 1), admitting pseudo-rotations. (These pseudo-rotations need not be

non-degenerate.)
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In this thesis we further investigate connections between pseudo-rotations and

symplectic topology of the underlying manifold; and present a result, [ÇGG20a], that

partially generalizes [Sh20]. We show that a closed monotone symplectic manifold, which

admits a non-degenerate Hamiltonian pseudo-rotation, must have a deformed quantum

Steenrod square of the top degree element and, as a consequence, non-trivial holomor-

phic spheres. This result complements the results from [ÇGG19]; and in [Sh19b] it is

generalized, using a different method, for a broader class of pseudo-rotations allowing

for some degenerations.

The quantum Steenrod square is a symplectic topological invariant introduced

in [Se] and then studied in [Wi20, Wi18]; see also [Be, BC, Fu, He, SS, ShZa] for

some relevant work. It is a cohomology operation QS on the quantum cohomology

HQ∗(M), which is a deformation of the standard Steenrod square. In other words,

QS(α) = Sq(α) + O(q), where q is the generator of the Novikov ring and α ∈ H∗(M).

Roughly speaking, a deformed quantum Steenrod square, just as a deformed quantum

product ∗, detects certain holomorphic spheres in M , but in general these spheres need

not be related to Gromov–Witten invariants. Furthermore, QS can also be viewed as

a deformation of the standard quantum square α 7→ α ∗ α, with respect to a different

parameter h, in the same sense as Sq can be thought of as a deformation of the cup

square α 7→ α ∪ α. On the Floer cohomology side, QS is closely related to another

quantum cohomology operation also introduced in [Se], the equivariant pair-of-pants

product ℘, which plays a crucial role in our proof. We will briefly discuss both of these

operations in Chapter 3.

4



Let $ be the generator of the top degree cohomology group H2n(M2n). Our

result, Theorem 2.1.1, asserts that QS($) is different from Sq($) = h2n$ whenever M

is monotone and admits a non-degenerate pseudo-rotation. Here we treat the Steenrod

square Sq as a degree doubling map

Sq: H∗(M)→ H∗(M)[[h]], Sq(α) =

|α|∑
i=0

h|α|−i Sqi(α),

where |h| = 1 and Sqi(α) is the i-th standard Steenrod square of α ∈ H∗(M), and

H∗(M)[[h]] is the space of formal power series with coefficients in H∗(M), [Se, Wi20,

Wi18]. As a consequence, there is a non-trivial holomorphic sphere through every point

of M .

It is difficult to compare Theorem 2.1.1 and the results from [ÇGG19] detecting

a deformed quantum product; for these theorems hold under different conditions and

provide different symplectic topological information. Note however that the statement

that QS is deformed is obviously much weaker than that its 0-th order term in h, the

quantum square, is deformed, i.e., α ∗ α 6= α ∪ α for some α ∈ H∗(M).

From a different prespective, it is expected that a Hamiltonian diffeomorphism

of a closed symplectic manifold has infinitely many periodic points whenever it has

“more than absolutely necessary” fixed points. This statement is referred to as the

Hofer–Zehnder conjecture, [HZ, p. 263]. It is a generalization of the celebrated theorem

of Franks which asserts that every area preserving diffeomorphism of S2 has either

exactly two or infinitely many periodic points, [Fr92, Fr96]. (Moreover, in the setting

of Franks’ theorem, there are also strong growth rate results; see, e.g, [FH, LeC, Ke].)
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The lower bound “more than absolutely necessary” is usually interpreted as a lower

bound arising from some version of the Arnold conjecture, e.g., as the sum of the Betti

numbers. For CPn, the expected threshold is n + 1 regardless of the non-degeneracy

assumption. In particular, it is 2 for S2 = CP1 as in Franks’ theorem. A slightly different

interpretation of the conjecture, not directly involving the count of fixed points, is that

the presence of a fixed or periodic point that is unnecessary from a homological or

geometrical perspective is already sufficient to force the existence of infinitely many

periodic points. We refer the reader to [GG14, Gü13, Gü14, Su21b] for some results in

this direction.

The non-degenerate case of the Hofer–Zehnder conjecture can be rephrased

as that all strongly non-degenerate counterexamples to the Conley conjecture are non-

degenerate pseudo-rotations. Recently, for a certain class of manifolds (e.g. CPn), this

was established in [Sh19a]; see also [Al]. (In fact, the results from [Sh19a] and [Al] allow

some degeneracy.) In this thesis we give a simple proof, [ÇGG20b], of a slightly weaker

version of Shelukhin’s theorem, [Sh19a, Thm. A].

The original proof of Franks’ theorem utilized methods from low-dimensional

dynamics, and the first purely symplectic topological proof was given in [CKRTZ].

However, that proof and also a different approach from [BH] were still strictly low-

dimensional, and Shelukhin’s theorem, [Sh19a, Thm. A], is the first sufficiently general

higher-dimensional variant of Franks’ theorem. (Strictly speaking, [Sh19a, Thm. A] and

our Theorem 2.2.1 and Corollary 2.2.2, which are overall slightly weaker, still fall short

of completely reproving Franks’ theorem in dimension two; we will discuss and compare
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these results in Section 2.2.1.) Similarly to [Sh19a], the key ingredient of our proof is

Seidel’s Z2-equivariant pair-of-pants product, [Se]. (While we use the original version

of the product, [Sh19a] relies on its Zp-equivariant version from [ShZa].) Our proof also

uses several simple ingredients from persistent homology theory in the form developed

in [UZ] (see also [PS]), although to a much lesser degree than [Sh19a].
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Chapter 2

Main results

In this chapter we state and discuss the main results. The conventions and

basic definitions are reviewed in Chapter 3.

2.1 From pseudo-rotations to holomorphic curves

The Chance–McDuff conjecture asserts that whenever the Conley conjecture

fails some Gromov-Witten invariants of the manifold are non-zero. In this thesis we

prove a variant of this conjecture. We show that a closed monotone symplectic manifold,

which admits a non-degenerate Hamiltonian pseudo-rotation, must have a deformed

quantum Steenrod square QS of the top degree element and, as a consequence, non-

trivial holomorphic spheres, [ÇGG20a]. Note that in general these spheres need not

be related to Gromov–Witten invariants. As of this writing, all known Hamiltonian

diffeomorphisms with finitely many periodic orbits are non-degenerate pseudo-rotations

and these two classes might well coincide; see Section 2.2.
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Theorem 2.1.1. Assume that a closed monotone symplectic manifold (M2n, ω) admits

a non-degenerate pseudo-rotation. Then the quantum Steenrod square QS of the top

degree cohomology class $ ∈ H2n(M ;F2) is deformed: QS($) 6= h2n$.

The proof of Theorem 2.1.1 hinges on the same idea as the argument in

[ÇGG19], although the latter proof is considerably more involved. In both cases, a

non-trivial deformation comes roughly speaking from constant (to be more precise, zero

energy) pair-of-pants solutions of the Floer equation: equivariant in the present case

and standard for the quantum product.

For the standard pair-of-pants product, a zero energy curve is easily seen to

be automatically regular provided that the Conley–Zehnder indices allow this. Namely,

consider the cohomology pair-of-pants product of iterated capped periodic orbits x̄k1 ∗

. . . ∗ x̄kr . Then the least action term in this product is x̄k with k = k1 + . . .+ kr, i.e.,

x̄k1 ∗ . . . ∗ x̄kr = x̄k + . . . ,

where the dots stand for higher action terms, if and only if x̄k has the “right” Conley–

Zehnder index. Explicitly, with our conventions, the latter index condition is that

µ
(
x̄k
)

= µ
(
x̄k1
)

+ . . .+ µ
(
x̄kr
)

+ (r − 1)n,

and the main difficulty in the proof in [ÇGG19] is to guarantee that this requirement

is satisfied for some orbit x̄ and that the resulting product is different from the cup

product.

On the other hand, for the equivariant pair-of-pants product, x̄2 (or, to be

more precise, its product with a suitable power of h) is always, without any index
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requirement, the least action term in ℘(x̄ ⊗ x̄), although now this is a non-trivial fact

proved in [Se]; see also [ShZa]. This is sufficient to show that the quantum Steenrod

square of $ is deformed whenever M admits a pseudo-rotation, by using simultaneously

the action and h-adic filtrations of the equivariant Floer cohomology.

Remark 2.1.2. We expect Theorem 2.1.1 to have several generalizations accessible by

the same method with relatively minor modifications. Namely, one might be able to

replace the assumption that M is monotone by the condition that it is weakly monotone;

for one can expect the constructions of the equivariant pair-of-pants product ℘ from [Se]

and of the quantum Steenrod square QS to extend to this setting with some modifications;

see [SW]. One might also be able to extend Theorem 2.1.1 to the quantum Steenrod Zp

cohomology operations (see [ShZa]). On the other hand, in [Sh19b], using a different

method, Theorem 2.1.1 is generalized for a broader class of pseudo-rotations allowing

for some degenerations.

2.2 Another look at the Hofer–Zehnder conjecture

Let ϕ be a Hamiltonian diffeomorphism of a closed monotone symplectic man-

ifold M . We view ϕ as the time-one map in a time-dependent Hamiltonian flow and

denote by Pk(ϕ) the set of its k-periodic points, arising from contractible k-periodic

orbits. The Hamiltonian diffeomorphism ϕ is said to be k-perfect if Pk(ϕ) = P1(ϕ) and

perfect if ϕ is k-perfect for all k ∈ N. We call ϕ a non-degenerate pseudo-rotation over a

field F if it is strongly non-degenerate, perfect and the differential in the Floer complex
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of ϕ over F vanishes. This condition is independent of the choice of an almost complex

structure and, by Arnold’s conjecture, equivalent to that the number of 1-periodic orbits

|P1(ϕ)| is equal to the sum of Betti numbers of M over F. Denote by β(ϕ) the boundary

depth of ϕ over F, i.e., the length of the maximal finite bar in the barcode of ϕ; see

[Us, UZ] and also Section 4.2.3.

One of the goals of this thesis is to give a simple proof, [ÇGG20b], of the

following theorem proved in a slightly different form in [Sh19a].

Theorem 2.2.1 (Shelukhin’s Theorem, [Sh19a]; see also [ÇGG20b]). Assume that ϕ is

strongly non-degenerate and perfect and that β(ψ) over F2 := Z2 is bounded from above

for all Hamiltonian diffeomorphisms ψ of M or at least for all iterates ψ = ϕ2k (e.g.,

M = CPn). Then ϕ is a non-degenerate pseudo-rotation.

Applying this to the iterates ϕ2k we obtain

Corollary 2.2.2 ([Sh19a]; see also [ÇGG20b]). Assume that ϕ is strongly non-degenerate,

β
(
ϕ2k
)

over F2 is bounded from above (e.g., M = CPn), and |P1(ϕ)| is strictly greater

than the sum of Betti numbers of M over F2. Then
∣∣P2k(ϕ)

∣∣→∞ as k →∞.

This theorem is proved in Section 4.2.2 as an easy consequence of Theorem

4.2.1. On the conceptual level, our proof of Theorem 4.2.1 is also a subset of Shelukhin’s

argument, although the inclusion is rather implicit. Namely, our proof focuses on the

behavior of the shortest bar βmin in the barcode of ϕ (rather than the longest finite

bar, a.k.a. the boundary depth, β ≥ βmin, [UZ]) or, to be more precise, of the shortest

Floer arrow under the iteration from ϕ to ϕ2; see Section 4.2.1. In particular, we show
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in Theorem 4.2.1 that when ϕ is 2-perfect the shortest arrow persists under such an

iteration, although it may migrate into the equivariant domain for ϕ2, and the length

of the arrow doubles. The shortest non-equivariant arrow for ϕ2 is at least as long as

the equivariant one. Hence βmin

(
ϕ2
)
≥ 2βmin(ϕ), and Theorem 2.2.1 readily follows

from Theorem 4.2.1 applied to a sequence of period doubling iterations; see Section

4.2.2. The key ingredient in the proof of Theorem 4.2.1 is the equivariant pair-of-pants

product, introduced in [Se], having a very strong non-vanishing property also proved

therein (see Proposition 3.2.6).

2.2.1 Comparison with Shelukhin’s theorem

In this section we discuss some of the differences between Theorem 2.2.1 and

the original Shelukhin’s theorem, [Sh19a, Thm. A]. From our perspective the key new

feature of the proof presented here is its simplicity. Note however that there are two

major differences (discussed in detail below) between Theorem 2.2.1 and [Sh19a, Thm.

A] which make the former a weaker statement. Our argument extends with minor

modifications to cover these differences, which we briefly discuss, but we prefer to omit

the proofs which would divert us from our goal.

First of all, in the most recent version of [Sh19a, Thm. A] there are no restric-

tions on the ground coefficient field F while here F = F2. When F is Q, the assertion is

that Pp(ϕ) contains a simple periodic orbit for every large prime p. As a consequence,

one obtains the growth of order at least O(k/ log k) for the number of simple periodic

orbits of period up to k. This difference stems from the fact that the main tool used in
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[Sh19a] is the Zp-equivariant pair-of-pants product introduced in [ShZa] while we rely

on a somewhat simpler Z2-equivariant pair-of-pants product defined in [Se]. We touch

upon the p-iterated analogues of Theorem 2.2.1 and Corollary 2.2.2 in Remark 4.2.12.

Secondly, [Sh19a, Thm. A] allows for some degeneracy of ϕ. Namely, in the

setting of Corollary 2.2.2, the number of 1-periodic orbits |P1(ϕ)| in the condition that

|P1(ϕ)| is strictly greater than the sum of Betti numbers is replaced by

∑
x∈P1(ϕ)

dimF HF(x;F), (2.1)

where HF(x;F) is the local Floer (co)homology of x with coefficients in a field F (see,

e.g., [GG10]). Note that, as a consequence, Corollary 2.2.2 still holds without the non-

degeneracy assumption, provided that the number of 1-periodic orbits with HF(x;F) 6= 0

is greater than the sum of Betti numbers. In the setting of this thesis, one should

take F = F2 and we will further discuss the degenerate case of Theorem 2.2.1 and

Corollary 2.2.2 in Section 4.2.5. Overall, the role of the condition that HF(x;F) 6= 0

is unclear to us beyond the case of S2. Franks’ theorem has an analogue for a certain

class of symplectomorphisms of surfaces and then, interestingly, this condition becomes

essential; see [Bat, GG09b].

2.2.2 Upper bound on β

In this section we discuss the requirement in Theorem 2.2.1 and Corollary 2.2.2

that β(ψ) is bounded from above. First of all, note that while it would be sufficient

to only have an upper bound on βmin(ψ) where ψ = ϕ2k or, as in [Sh19a, Thm. A],

13



on β(ψ) where ψ = ϕp, all relevant results proved to date are more robust and give

an upper bound on β(ψ) for all ψ. (This is the curse (and the blessing) of symplectic

topological methods in dynamics: they are very robust and general, but not particularly

discriminating; they often tell the same thing about all maps. There are, however,

exceptions.)

The simplest manifold for which such an a priori bound is established is CPn

for any coefficient field (suppressed in the notation), and the result essentially goes back

to [EP]. The argument is roughly as follows. (We use here the notation and conventions

from Section 3.1.) First recall that

β(ψ) ≤ γ(ψ). (2.2)

Here γ(ψ) is the γ-norm of ψ defined, using cohomology, as

γ(ψ) = −
(

c1(ψ) + c1(ψ−1)
)
,

where cα(ψ) is the spectral invariant associated with a quantum cohomology class α ∈

HQ(M) and 1 is the unit in the ordinary cohomology H(M) of M . (We suppress the

grading in the cohomology notation when it is irrelevant.) The upper bound (2.2) holds

for any closed monotone symplectic manifold and its proof is similar to the proof in [Us]

of the upper bound for β by the Hofer norm, but with continuation maps replaced by

the multiplications by the image of 1 in HF(ψ) and HF
(
ψ−1

)
. (We refer the reader

to [KS] for some further results along these lines.) Applying the Poincaré duality in

Floer cohomology (see [EP]), it is not hard to show that c1(ψ−1) = − c$(ψ) when

N ≥ n + 1, where $ is the generator of H2n(M) and N is the minimal Chern number

14



of M2n. In particular, this is true for M = CPn since then N = n+ 1. By construction,

for any two classes α and ζ in HQ(M) the spectral invariants satisfy the Lusternik–

Schnirelmann inequality cα∗ζ(ψ) ≥ cα(ψ). Thus, from the identity $ ∗ ζ = q1 where

ζ is the generator of HQ2(CPn), we conclude that c1(ψ) ≤ c$(ψ) ≤ c1(ψ) + π. These

inequalities, combined with (2.2), show that

β(ψ) ≤ γ(ψ) ≤ π

for any Hamiltonian diffeomorphism ψ of CPn.

A similar upper bound on β holds for all closed monotone manifolds M such

that HQeven(M ;F) for some field F is semi-simple, i.e., splits as an algebra into a direct

sum of fields. This is [Sh19a, Thm. B] and, interestingly, this result bypasses the upper

bound (2.2) in its original form. In fact, HQ(S2 × S2;Q) is semi-simple, but γ is not

bounded from above for S2×S2; see [Sh19a, Rmk. 7] and also [PR, Thm. 6.2.6]. We are

not aware of any algebraic criteria for an a priori bound on the γ-norm. Nor do we know

how large the class of monotone symplectic manifolds with semi-simple HQeven(M ;F)

is. In addition to CPn (with any F), the complex Grassmannians, S2× S2, and the one

point blow-up of CP2 with standard monotone symplectic structures are in this class

when char F = 0 (see [EP] and references therein); but S2 × S2 is not for F = F2.

2.3 Pseudo-rotations of CP2

Let ϕ be a non-degenerate pseudo-rotation of CPn and let x̄i be the capped

1-periodic orbits of ϕ with Conley–Zehnder index µ(x̄i) ∈ [−n, n]. The pseudo-rotation
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ϕ is called balanced if the sum
∑
µ̂(x̄i) of the mean indices µ̂(x̄i) of x̄i is equal to zero.

Such pseudo-rotations are of interest since, for instance, one can show that, [GG18b],

every balanced pseudo-rotation of CP2 has a matching true rotation with the same fixed

point data; which is consistent with the conjugation method (see [AK, FK, LeRS]). On

the other hand, a pseudo-rotation of CPn which is not balanced, if exists, cannot come

from the conjugation method since all true rotations are balanced; see [GG18b].

It was proved in [GG18b] that most pseudo-rotations of CP2 are balanced

with some possible exceptions called ghost pseudo-rotations. In this thesis, following

[GG18b, Rmk. 5.12] and using the quantum Steenrod square from [Wi20, Wi18], we

prove the following index theorem which as a corollary implies that all non-degenerate

pseudo-rotations of CP2 are balanced.

Theorem 2.3.1. Let ϕ be a pseudo-rotation of CP2. Assume that ϕ, ϕ2 are non-

degenerate and let x̄i be the capped 1-periodic orbits of ϕ with indices µ(x̄1) = −2,

µ(x̄2) = 0 and µ(x̄3) = 2. Then we have µ(x̄2
1) + µ(x̄2

2) + µ(x̄2
3) = 0.

For a non-degenerate pseudo-rotation ϕ of CP2, by applying Theorem 2.3.1 to

the iterates of the form ϕ2k one can conclude that ϕ is balanced, i.e., µ̂(x̄1) + µ̂(x̄2) +

µ̂(x̄3) = 0. Note that, in the setting of Theorem 2.3.1, although the sum of indices does

not change

0 =
∑

µ(x̄i) =
∑

µ(x̄2
i ),

individual terms in the sum might change and can go out of the support {0,±2}. For

instance, this is the case (for CP1) for the second pseudo-rotation considered in Example
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3.2.15. As a consequence, when applying Theorem 2.3.1 to the pair ϕ2, ϕ4 one might

need to recap the capped orbits x̄2
i so that their indices are supported in {0,±2}.

However in that case, since
∑
µ(x̄2

i ) = 0, the total index change caused by the recapping

would be zero. One still concludes that

0 =
∑

µ(x̄i) =
∑

µ(x̄2
i ) =

∑
µ(x̄4

i ) = · · · ,

and as a result

0 = lim
k→∞

∑ µ(x̄2k
i )

2k
=
∑

µ̂(x̄i).

Hence we have

Corollary 2.3.2. Every non-degenerate pseudo-rotation of CP2 is balanced.

A generalization of this result to CPn for all n > 2 is work in progress.
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Chapter 3

Preliminaries

3.1 Conventions and notation

Throughout this thesis, the underlying symplectic manifold (M,ω) is assumed

to be closed and strictly monotone, i.e., [ω]|π2(M) = λc1(TM)|π2(M) 6= 0 for some

λ > 0. The minimal Chern number of M is the positive generator N of the subgroup

〈c1(TM), π2(M)〉 ⊂ Z and the rationality constant is the positive generator λ0 = 2Nλ

of the group 〈ω, π2(M)〉 ⊂ R.

A Hamiltonian diffeomorphism ϕ = ϕH = ϕ1
H is the time-one map of the time-

dependent flow ϕt = ϕtH of a 1-periodic in time Hamiltonian H : S1 ×M → R, where

S1 = R/Z. The Hamiltonian vector field XH of H is defined by iXH
ω = −dH. Such

time-one maps form the group Ham(M,ω) of Hamiltonian diffeomorphisms of M . In

what follows, it will be convenient to view Hamiltonian diffeomorphisms together with

the path ϕtH , t ∈ [0, 1], up to homotopy with fixed end points, i.e., as elements of the
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universal covering H̃am(M,ω) of the group of Hamiltonian diffeomorphisms.

Let x : S1 →M be a contractible loop. A capping of x is an equivalence class

of maps A : D2 →M such that A|S1 = x. Two cappings A and A′ of x are equivalent if

the integral of ω (or of c1(TM) since M is strictly monotone) over the sphere obtained

by attaching A to A′ is equal to zero. A capped closed curve x̄ is, by definition, a closed

curve x equipped with an equivalence class of cappings, and the presence of capping is

indicated by a bar.

The action of a Hamiltonian H on a capped closed curve x̄ = (x,A) is

AH(x̄) = −
∫
A
ω +

∫
S1

Ht(x(t)) dt.

The space of capped closed curves is a covering space of the space of contractible loops,

and the critical points of AH on this space are exactly the capped 1-periodic orbits of

XH .

The k-periodic points of ϕ are in one-to-one correspondence with the k-periodic

orbits of H, i.e., of the time-dependent flow ϕt. Recall also that a k-periodic orbit of H

is called simple if it is not iterated. A k-periodic orbit x of H is said to be non-degenerate

if the linearized return map Dϕk : Tx(0)M → Tx(0)M has no eigenvalues equal to one. A

Hamiltonian H is non-degenerate if all its 1-periodic orbits are non-degenerate and H

is strongly non-degenerate if all periodic orbits of H (of all periods) are non-degenerate.

We denote the collection of capped k-periodic orbits of H by P̄k(ϕ).

Let x̄ be a non-degenerate capped periodic orbit. The Conley–Zehnder index

µ(x̄) ∈ Z is defined, up to a sign, as in [Sa, SZ]. In this thesis, we normalize µ so that
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µ(x̄) = n when x is a non-degenerate maximum (with trivial capping) of an autonomous

Hamiltonian with small Hessian.

The mean index µ̂(x̄) ∈ R measures, roughly speaking, the total angle swept by

certain (Krein–positive) unit eigenvalues of the linearized flow dϕt|x̄ with respect to the

trivialization associated with the capping; see [Lo, SZ]. The mean index is defined even

when x is degenerate, and we always have the inequality
∣∣ µ̂(x̄)− µ(x̄)

∣∣ ≤ n. Moreover,

if x is non-degenerate, the inequality is strict:

∣∣ µ̂(x̄)− µ(x̄)
∣∣ < n. (3.1)

The mean index is homogeneous with respect to iteration: µ̂
(
x̄k
)

= k µ̂(x̄). (The

capping of x̄k is obtained from the capping of x̄ by taking its k-fold cover branched at

the origin.)

Fixing an almost complex structure, which will be suppressed in the notation,

we denote by (CF(ϕ), dFl) and HF(ϕ) the Floer complex and cohomology of ϕ over

F2 = Z2; see, e.g., [MS, Sa]. (Throughout this thesis, all complexes and cohomology

groups are over F2.) The complex CF(ϕ) is generated by the capped 1-periodic orbits

x̄ of H, graded by the Conley–Zehnder index, and filtered by the action. The filtration

level (or the action) of a chain ξ ∈ CF(ϕ) is defined by

A(ξ) = min{A(x̄i)}, where ξ =
∑

x̄i. (3.2)

(Note that the filtration depends on H, not just on ϕ, making of the notation CF(ϕ)

somewhat misleading.) The differential dFl is the upward Floer differential: it increases

the action and also the index by one. The Floer complex CF(ϕ) is also a finite-
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dimensional free module over the Novikov ring Λ. There are several choices of Λ; see,

e.g., [MS]. For our purposes, it is convenient to take the field of Laurent series F2((q))

with |q| = 2N as Λ. With this choice, Λ naturally acts on CF(ϕ) by recapping, and

multiplication by q corresponds to the recapping by A ∈ π2(M) with 〈c1(TM), A〉 = N .

Furthermore, CF(ϕ) is a finite-dimensional vector space over Λ with a preferred basis

formed by 1-periodic orbits with arbitrarily fixed capping.

Notationally, it is convenient to equip CF(ϕ) with a non-degenerate F2-valued

pairing 〈 , 〉 for which P̄1(ϕ) is an orthogonal basis: 〈x̄, ȳ〉 = δx̄ȳ. Then, essentially by

definition,

dFlx̄ =
∑
〈dFlx̄, ȳ〉 ȳ.

There is a canonical, grading-preserving isomorphism

Φ: HQ∗(M)
∼=−→ HF∗(ϕ)[n], (3.3)

where HQ(M) is the quantum cohomology of M ; see, e.g., [Sa, MS] and references

therein. (Depending on the context, this is the PSS-isomorphism or the continuation

map or a combination of the two.) The cohomology groups HQ(M) and HF(ϕ) are also

modules over a Novikov ring Λ, and HQ(M) ∼= H(M)⊗ Λ ∼= HF(ϕ) (as a module).

For instance, assume that H is C2-small and autonomous (i.e., independent of

t), and has a unique maximum and a unique minimum. Then the top degree cohomology

class $ ∈ H2n(M) ⊂ HQ2n(M) corresponds to the maximum of H, which has degree n

in HF∗(ϕ); the unit 1 ∈ HQ0(M) corresponds to the minimum of H which has degree

−n in HF∗(ϕ). We denote by |α| the degree of α ∈ HQ∗(M) or α ∈ HF∗(ϕ).
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When ϕ is a pseudo-rotation (or, more generally, if dFl = 0), the isomorphism

(3.3) turns into the natural identification

HQ∗(M)[−n] ∼= HF∗(ϕ) ∼= CF∗(ϕ).

Since any iterate ϕk is also a pseudo-rotation, we have

HQ∗(M)[−n] ∼= HF∗
(
ϕk
) ∼= CF∗

(
ϕk
)
.

It is worth emphasizing that the resulting isomorphism between CF∗(ϕ) = HF∗(ϕ) and

CF∗
(
ϕk
)

= HF∗
(
ϕk
)
, which is given by the continuation map, is usually different from

the iteration map x̄ 7→ x̄k. For instance, unless M is aspherical the iteration map is not

onto and, in general, µ(x̄) 6= µ
(
x̄k
)

even in the aspherical case.

The quantum homology HQ∗(M) carries the quantum product, denoted here

by ∗, which makes it into a graded-commutative algebra over Λ with unit 1. This

product is a deformation (in q) of the cup product: α ∗ β = α∪ β+O(q). For instance,

α1 ∗ αn = q1 in HQ∗(CPn), where αl stands for the generator (i.e., the only non-zero

element) of H2l(CPn). In Floer cohomology, the quantum product corresponds to the

so-called pair-of-pants product

HF∗(ϕ)⊗HF∗(ϕ)→ HF∗
(
ϕ2
)
[n],

which we also denote by ∗. We emphasize that with our conventions |α∗β| = |α|+|β|+n

in Floer cohomology. When (3.3) is applied to ϕ and ϕ2, the pair-of-pants product turns

into the quantum product:

HQ∗(M)⊗HQ∗(M) ∼= HF∗(ϕ)⊗HF∗(ϕ)→ HF∗
(
ϕ2
) ∼= HQ∗(M).
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Here, for the sake of simplicity, we suppressed the shifts of degree as we often will in

what follows.

3.2 Equivariant Floer cohomology and the pair-of-pants

product

Drawing heavily from [Se] and also [ShZa, Wi20, Wi18], we recall the construc-

tion of the equivariant Floer cohomology and equivariant pair-of-pants product together

with its relation to the quantum Steenrod square in the case where the ambient man-

ifold M is closed and monotone. Then we will take a closer look at the effect of the

additional condition that the Hamiltonian diffeomorphism ϕ is a pseudo-rotation.

3.2.1 Equivariant Floer cohomology

The equivariant Floer cohomology HFeq

(
ϕ2
)
, introduced in [Se], is the homol-

ogy of a certain complex
(

CFeq

(
ϕ2
)
, deq

)
called the equivariant Floer complex. As a

graded F2-vector space or as a Λ-module,

CF∗eq
(
ϕ2
)

:= CF∗
(
ϕ2
)
[[h]] = CF∗

(
ϕ2
)
⊗Λ Λ[[h]] (3.4)

where |h| = 1, and the differential deq has the form

deq = dFl + h d1 + h2 d2 + . . . = dFl +O(h).

Remark 3.2.1. For monotone symplectic manifolds there are other choices in the defi-

nition of CF∗eq
(
ϕ2
)
, e.g., CF∗

(
ϕ2
)
[h]; see Remark 3.2.12. We utilize this flexibility and

use the polynomial version CF∗
(
ϕ2
)
[h] in the proof of Theorem 4.2.1.
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The differential deq is Λ[[h]]-linear and non-strictly action-increasing. It is

roughly speaking defined as follows, mimicking Borel’s construction of the Z2-equivariant

Morse cohomology.

Fix a family J̃ of 2-periodic in t almost complex structures on M parametrized

by the unit infinite-dimensional sphere S∞ ⊂ R∞. Here R∞ is the direct sum of infinitely

many copies of R, i.e., its elements ξ = (ξ0, ξ1, . . .) have only finitely many non-zero

components, and S∞ = {‖ξ‖ = 1} with ‖ξ‖2 =
∑

k |ξk|2. The almost complex structure

J̃ is required to satisfy the symmetry condition J̃−ξ = J̃ ′ξ, where J̃ ′ξ is obtained from J̃ξ

by the time-shift t 7→ t+ 1. Consider the self-indexing quadratic form f(ξ) =
∑

k k|ξk|2

on S∞ and an antipodally symmetric metric such that the natural equatorial embedding

S∞ → S∞ given by (ξ0, ξ1, . . .) 7→ (0, ξ0, . . .) is an isometry. (Note also that the pull

back of f by this embedding is f+1.) The almost complex structure J̃ must furthermore

be constant in ξ near the critical points of f , invariant under the equatorial embedding,

and satisfy a certain regularity requirement. Denote by w±k the critical points of f of

index k.

Next, consider the hybrid Morse-Floer complex of A+f with respect to J̃ and

the metric on S∞. This complex has pairs (x̄, w±k ) with x̄ ∈ P̄2(ϕ) as generators and

carries a natural Z2-action, free on the generators, sending (x̄, w±k ) to (x̄′, w−±k ), where

x̄′ is the time-shift of x̄. It is easy to see that the homology of this hybrid complex

is equal to HF(ϕ2). By definition, CFeq

(
ϕ2
)

is the Z2-invariant part of this hybrid

complex, where we write x̄ hk for (x̄, w+
k ) + (x̄′, w−k ). The fact that the differential is

h-linear follows from the requirement that f (up to a constant) and the auxiliary data
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are invariant under the equatorial embedding. Thus, in self-explanatory notation,

dkx̄ =
∑〈

dkx̄, hkȳ
〉
ȳ, where µ(ȳ) = µ(x̄) + 1− k

and
〈
dkx̄, hkȳ

〉
counts mod 2 the total number of continuation Floer trajectories from

x̄ to ȳ along gradient lines of f connecting w+
0 to w+

k and from x̄ to ȳ′ along gradient

lines of f connecting w+
0 to w−k . Clearly, the complex (and hence its cohomology) is

filtered by the action A in addition to the filtration by A+f . On the level of (co)chains

the filtration is defined similarly to (3.2), but with the powers of h ignored:

A(ξ) = min{A(x̄i)}, where ξ =
∑

hmi x̄i.

The equivariant complex and the cohomology has natural continuation properties; see

[Se].

Example 3.2.2. Assume that ϕ is 2-perfect and ϕ2 admits a regular 1-periodic almost

complex structure J , i.e., for every pair x̄ and ȳ of 2-periodic orbits the space of Floer

trajectories connecting x̄ to ȳ has dimension µ(ȳ) − µ(x̄). In particular, this space is

empty when µ(ȳ) ≤ µ(x̄), except when ȳ = x̄ and the space comprises one constant

trajectory. Set J̃ = J to be a constant (i.e., independent of ξ) almost complex structure.

Then J̃ is also regular and dj = 0 for j ≥ 1 since continuation trajectories for a constant

homotopy are just Floer trajectories. Thus, in this case, HFeq

(
ϕ2
)

= HF(ϕ)[[h]] for any

interval of action. These conditions are met, for instance, when ϕ = ϕH is generated

by a C2-small autonomous Hamiltonian H. As a consequence, for any ϕ the global

cohomology HFeq

(
ϕ2
)

is not a particularly interesting object: it is simply isomorphic to
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HQ(M)[[h]] via the equivariant continuation (or the PSS map); see [Wi18, Wi20] for

further details.

Remark 3.2.3. In this connection we point out that there are two slightly different con-

structions of the equivariant Floer cohomology for Hamiltonians with symmetry, e.g., the

S1-symmetry for autonomous Hamiltonians and the Zk-symmetry for k-iterated Hamil-

tonian diffeomorphisms. The first construction uses a parametrized perturbation of the

original Hamiltonian and the action functional; see [BO, Vi99] and also [GG19]. This

is a Floer theoretic analogue of taking a Morse perturbation of the pull-back (which is

Morse–Bott) of the original Morse function to the Borel quotient. In the second con-

struction one keeps the Hamiltonian and the action functional unchanged, but uses a

parametrized almost complex structure and continuation maps along the gradient lines

of an auxiliary Morse function on the classifying space to define the differential; see

[Hu, Se, SS]. This approach results in a complex and cohomology a priori better be-

having with respect to the action filtration. This is the complex considered here. (The

difference becomes apparent in the context of the filtered Leray spectral sequence con-

verging to the equivariant cohomology and associated with the h-adic filtration: it is not

even clear how to define the h-adic filtration in the framework of the first construction

without additional assumptions on the perturbation; see [BO].)

3.2.2 Equivariant pair-of-pants product

The target space of the equivariant pair-of-pants product is the Z2-equivariant

cohomology HF∗eq
(
ϕ2
)

and the domain is the ordinary group cohomology of Z2 with
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coefficients in the complex CF∗(ϕ)⊗F2CF∗(ϕ) with the Z2-action given by the involution

ι interchanging the two factors. In other words, this is the cohomology of the complex

C∗
(
Z2; CF∗(ϕ)⊗F2 CF∗(ϕ)

)
:=
(

CF∗(ϕ)⊗F2 CF∗(ϕ)
)
[[h]]

equipped with the differential dZ2 = dFl + h(id + ι), where the first term stands for

the differential induced by dFl on the tensor product. This complex also carries two

increasing filtrations: the action filtration and the h-adic filtration. We note that the

complex is “unaware” of simple 2-periodic orbits of ϕ.

The equivariant pair-of-pants product is the F2[[h]]-linear map

℘ : H∗
(
Z2; CF∗(ϕ)⊗F2 CF∗(ϕ)

)
→ HF∗eq

(
ϕ2
)

induced by the chain map

C∗
(
Z2; CF∗(ϕ)⊗F2 CF∗(ϕ)

)
→ CF∗eq

(
ϕ2
)

constructed in [Se]. This product is a deformation in h of the pair-of-pants product,

i.e., on the chain level the equivariant pair-of-pants product ℘(c1 ⊗ c2) of c1 and c2 in

CF∗eq(ϕ) has the form c1 ∗ c2 +O(h). Furthermore, on the chain level, ℘ is bi-linear, i.e.,

℘(qc1 ⊗ c2) = ℘(c1 ⊗ qc2) = q℘(c1 ⊗ c2). Note, however, that qc1 ⊗ c2 6= c1 ⊗ qc2, since

the tensor product is taken over F2.

To get a better understanding of how the map ℘ works, note first that the

graded space CF∗
(
ϕ2
)

has a canonical involution ι′ given by the shift of time x(t) 7→

x(t + 1); for the generators of this space are the 2-periodic orbits of ϕ. In general,

this linear map, extended to CF∗
(
ϕ2
)
[[h]], does not commute with dFl unless there is

27



a regular 1-periodic (rather than 2-periodic) almost complex structure. However, when

this is the case, one can replace the complex CF∗eq
(
ϕ2
)

by the former complex with

the differential dFl + h(id + ι′). Then ℘ is a deformation of the map induced by the

pair-of-pants product map CF(ϕ)⊗F2 CF(ϕ)→ CF
(
ϕ2
)

of the “coefficient” complexes.

Remark 3.2.4. Recall that even when ι′ does not commute with dFl, it becomes an iso-

morphism of complexes when the target is equipped with the Floer differential associated

with the time-shifted almost complex structure J ′t = Jt+1. Then, once composed with the

continuation map, ι′ induces an involution of HF∗
(
ϕ2
)
. In our setting, the global Floer

cohomology HF∗
(
ϕ2
)

and the involution are independent of ϕ, and hence this involution

is the identity map.

The key property, [Se, Thm. 1.3], of the equivariant pair-of-pants product

map ℘ is that when, for example, (M,ω) is symplectically aspherical it becomes an

isomorphism once h−1 is attached to the ground ring, i.e., after taking tensor product

with the ring of Laurent series F2((h)). This yields the Floer theoretic analogue of

Borel’s localization relating the filtered cohomology HF∗(ϕ) and HF∗eq
(
ϕ2
)

and, as a

consequence, a variant of Smith’s inequality, cf. [ÇG, He, Sh19a, ShZa]. Although in

this thesis we do not directly use any of these results, we will briefly revisit them in

Remark 3.2.8.

Next, consider the map S : CF∗(ϕ)→ CF∗(ϕ)⊗F2 CF∗(ϕ) given by c 7→ c⊗ c

for all c ∈ CF∗(ϕ). When needed, we extend this map to CF∗(ϕ)[[h]] by setting S(hc) =

hS(c). Note that, since we tensor over F2, the map S is not homogeneous in q. In
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general, S is neither linear (even over F2) nor, when linear, is it a chain map. However,

S is well-defined on the level of cohomology and becomes F2[[h]]-linear when multiplied

by h, i.e., as a map

hS : HF∗(ϕ)[[h]]→ H∗
(
Z2; CF∗(ϕ)⊗F2 CF∗(ϕ)

)
. (3.5)

For instance, to see the linearity it suffices to observe that

h
(
(c1 + c2)2 − c2

1 − c2
2

)
= dZ2(c1 ⊗ c2),

when dFl(c1) = 0 = dFl(c2). As a consequence, S itself is defined and F2[[h]]-linear

on the level of cohomology when the target has no h-torsion. Then, composing the

cohomology map S with the equivariant pair-of-pants map ℘, we obtain a map

PS : HF∗(ϕ)[[h]]→ HF∗eq
(
ϕ2
)
;

the notation is borrowed from [Wi20, Wi18]. This map is F2[[h]]-linear whenever the

target has no h-torsion and, as we will soon see, this condition is automatically satisfied

in the case we are interested in.

Remark 3.2.5. Following [Se, Sect. 2.1] note that for purely algebraic reasons there is

a canonical isomorphism

H∗
(
Z2; CF∗(ϕ)⊗F2 CF∗(ϕ)

) ∼= H∗
(
Z2; HF∗(ϕ)⊗F2 HF∗(ϕ)

)
Hence the cohomology group on the right can also be thought of as the domain of the

equivariant pair-of-pants product ℘ and the target of the map S. Furthermore, the map

S : HF∗(ϕ)((h))→ H∗
(
Z2; CF∗(ϕ)⊗F2 CF∗(ϕ)

)
⊗F2[[h]] F2((h)),
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which is F2((h))-linear regardless of whether or not the target of hS in (3.5) has h-

torsion, is also an isomorphism, again for purely algebraic reasons.

In general, we still have PS defined on the chain level as a map

CF∗(ϕ)[[h]]→ CF∗eq
(
ϕ2
)

such that PS(c) = c ∗ c + O(h) for c ∈ CF∗(ϕ), but it is neither F2-linear nor a chain

homomorphism. Recall that the map S itself is not homogeneous in q. However the

composition PS is homogeneous, since ℘ satisfies ℘(qc1 ⊗ c2) = ℘(c1 ⊗ qc2). (Here we

have once again ignored the shift of degree: by construction, |PS(c)| = 2|c|+ n.)

By construction the equivariant pair-of-pants map ℘ and the map PS preserve

the action filtration; cf. Remark 3.2.9.

One of the key ingredients in the proof of [Se, Thm. 1.3] is the following result,

which also plays a central role in our argument and which, slightly deviating from [Se],

we state for the map PS rather than for ℘.

Proposition 3.2.6 ([Se], Prop. 6.7). Consider a collection of orbits x̄i ∈ P̄1(ϕ), i =

1, . . . , `, such that AH(x̄i) = a for i = 1, . . . , `0 ≤ ` and AH(x̄i) > a for the remaining

orbits. Then

PS :
∑̀
i=1

x̄i 7→
`0∑
i=1

hmi x̄2
i + . . . ,

where x̄2
i ∈ P̄2(ϕ) is the second iterate of x̄i and

mi = 2µ(x̄i)− µ
(
x̄2
i

)
+ n (3.6)

and the dots stand for a sum of capped orbits with action strictly greater than 2a.
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For instance, PS(x̄) = hmx̄2 + . . ., where m = 2µ(x̄) − µ(x̄2) + n and the

remaining terms have action higher than that of x̄2. In particular, x̄2 with some power

of h is necessarily present in PS(x̄).

Proposition 3.2.6 is an equivariant analogue of the standard fact that a constant

solution of the Floer or Cauchy–Riemann equation is automatically regular whenever

the relative index of the solution is zero, which in turn is a consequence of that the kernel

of the linearized operator at the constant solution with suitable boundary conditions is

trivial; see, e.g., [ÇGG19, Lemma 3.1], [MS, Lemma 6.7.6], [Se, p. 971] and [Sa, Sect.

2.7]. However, the step from a non-equivariant to equivariant setting is non-trivial. We

refer the reader to [Se] for the proof; see also [ShZa] for an alternative approach and

generalizations.

Remark 3.2.7. A generalization of the equivariant pair-of-pants product to the p-th

iterates ϕp, where p is a prime, replacing Z2 by Zp and F2 by Fp is constructed in

[ShZa]. This construction and the analogue of Seidel’s non-vanishing theorem for the

p-th iterate plays a crucial role in the original proof of Shelukhin’s theorem in [Sh19a];

cf. Remark 4.2.12.

Remark 3.2.8 (Borel’s localization theorem according to [Se]). As has been mentioned

above, one consequence of Proposition 3.2.6 is [Se, Thm. 1.3] asserting, in particular,

that for a symplectically aspherical manifold the equivariant pair-of-pants product ℘ in

the filtered Floer cohomology (i.e., the homology of the Floer complex restricted to an

action interval) becomes an isomorphism after tensoring with F2((h)). (The theorem
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follows from the proposition via applying the spectral sequence comparison theorem to

the action filtration spectral sequence.) Since S is an isomorphism modulo h-torsion

for purely algebraic reasons (see Remark 3.2.5), this yields that the map PS is also an

isomorphism, as well as the variants of Borel’s localization and Smith’s inequality in

the filtered Floer cohomology.

On the other hand, while for a closed symplectic manifold M the analogues of

Borel’s localization and Smith’s inequality hold trivially in the global Floer cohomology,

the filtered version of Borel’s localization (in the most naive form) fails without the

assumption that (M,ω) is symplectically aspherical; see, however, [Sh19a]. Moreover,

PS need not be an isomorphism even globally without this assumption. In fact, as

Example 3.2.10 shows, PS is not an epimorphism already for M = S2.

Remark 3.2.9 (Regularity). To ensure that the regularity condition is satisfied for the

equivariant pair-of-pants product, a certain arbitrarily small “inhomogeneous perturba-

tion”, i.e., an s-dependent perturbation of the Hamiltonian, is introduced to the Floer

equation in [Se]. This perturbation is compactly supported in s and thus does not af-

fect the initial and terminal Hamiltonians and the actions. However, it does affect the

relation between the energy of a pair-of-pants curve and the action difference. As a

consequence, the equivariant pair-of-pants product ℘ is now action increasing only up

to an ε-error, which goes to zero with the size of the perturbation. Therefore, PS also

preserves the action filtration only up to an ε-error. In particular, if all fixed points of

ϕ have distinct actions and ε > 0 is small, PS literally preserves the action filtration.

This would already be sufficient for our purposes; see Remark 4.1.1. However, since the
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pair-of-pants curves connecting different orbits must have energy a priori bounded away

from zero (cf. [GG17, Prop. 2.2]), the map PS always preserves the action filtration

when the inhomogeneous perturbation is small enough, and Proposition 3.2.6 holds as

stated.

3.2.3 Quantum Steenrod square

The counterpart of the map PS on the side of the quantum cohomology is the

quantum Steenrod square QS. This quantum cohomology operation is studied in detail

in [Wi20, Wi18], but the first Morse/Floer theoretic descriptions of the Steenrod squares

go back to [Be, BC, Fu]. Throughout this section it is essential that the manifold M is

closed.

Following [Se, Wi20, Wi18] and slightly changing the usual notation, let us

define the Steenrod square as the degree doubling linear map

Sq: H∗(M)→ H∗(M)[[h]], Sq(α) =

|α|∑
i=0

h|α|−i Sqi(α), (3.7)

where Sqi are the standard Steenrod squares. In particular, |Sqi(α)| = |α| + i, and

Sq0(α) = α and Sq|α|(α) = α ∪ α. For instance, for the generator $ of H2n(M2n),

Sq($) = h2n$. (3.8)

The quantum Steenrod square is a degree doubling map

QS : H∗(M)→ HQ∗(M)[[h]],

which is a certain deformation of Sq in q:

QS(α) = Sq(α) +O(q) (3.9)
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for α ∈ H∗(M). For instance,

QS($) = h2n$ +O(q),

and QS is undeformed at $ ∈ H2n(M) if and only if the higher order terms in q vanish.

It is convenient to formally extend Sq and QS to the maps

Sq: HQ∗(M)[[h]]→ HQ∗(M)[[h]]

and

QS : HQ∗(M)[[h]]→ HQ∗(M)[[h]],

which are linear over F2[[h]] and homogeneous of degree two in q. More precisely, for

instance, we set QS(hα) = hQS(α) and QS(qα) = q2QS(α). Since the extension is

linear over F2[[h]], the maps are no longer degree doubling. In what follows, unless

stated otherwise, Sq and QS we will refer to the extended maps above. Note that QS

is still a deformation of Sq in q in the sense of (3.9).

The next ingredient we need is the equivariant continuation/PSS map intro-

duced in [Wi18]. This is the map Φeq from the Z2-equivariant cohomology of HQ∗(M)

with trivial action to the equivariant Floer cohomology of ϕ2:

Φeq : HQ∗eq(M)→ HF∗eq
(
ϕ2
)
[n].

Since the Z2-action in the cohomology is trivial, we have

HQ∗eq(M) = HQ∗(M)[[h]]

and one can also think of the cohomology on the left hand side as the target space of

QS.
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Just as an ordinary continuation/PSS map Φ, its equivariant counterpart Φeq

is an F2[[h]]-linear isomorphism. As a consequence, HF∗eq
(
ϕ2
)

has no h-torsion and the

map PS is linear.

The spaces and maps we have introduced fit together into the following commu-

tative diagram, where we again suppressed the shifts of degree by the continuation/PSS

maps:

HQ∗(M)[[h]]

QS
��

Φ
∼=
// HF∗(ϕ)[[h]]

PS
��

HQ∗eq(M)

∼=
��

Φeq

∼=
// HF∗eq

(
ϕ2
)

F
��

HQ∗(M)[[h]]
Φ
∼=
// HF∗

(
ϕ2
)
[[h]]

(3.10)

We emphasize that here the continuation/PSS maps Φ for ϕ and ϕ2, and Φeq (i.e., the

horizontal arrows) are F2[[h]]-linear isomorphisms. The requirement that the top square

is commutative can be viewed as the definition of QS, [Wi18]. Likewise, the condition

that the bottom square is commutative is the definition of F , i.e.,

F = ΦΦ−1
eq .

It is worth pointing out that in general the map F need not preserve the action filtration.

Example 3.2.10. Let M = S2. Then QS(1) = 1 and QS($) = h2$ + q1, where 1 is

the generator of H0(S2); see [Wi20]. Here q1 is the deformation term, which is equal

to the quantum square of $. Continuing the discussion from Remark 3.2.8 and making

h invertible, it is now easy to see that neither $ nor q1 nor q$ is in the image of

QS : HQ∗(S2)((h))→ HQ∗eq(S
2)⊗F2[[h]] F2((h)) ∼= HQ∗(S2)⊗Λ Λ((h)).
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As a consequence of the diagram (3.10),

PS : HF∗(ϕ)((h))→ HF∗eq(ϕ
2)⊗F2[[h]] F2((h))

is not onto for any Hamiltonian diffeomorphism ϕ : S2 → S2. Note that at the same

time linearly extending the classical Steenrod square map (3.7) over F2((h)) gives a

linear isomorphism H∗(M)((h))→ H∗(M)((h)) for any closed manifold M .

Finally, as has been mentioned above, the complex CF∗eq
(
ϕ2
)

carries the h-adic

filtration:

CF∗eq
(
ϕ2
)
⊃ h CF∗eq

(
ϕ2
)
⊃ h2 CF∗eq

(
ϕ2
)
⊃ . . . .

The associated spectral sequence (the Leray spectral sequence in the equivariant co-

homology) converges to the graded space E∞ associated with the h-adic filtration of

HF∗eq
(
ϕ2
)
. It readily follows from the fact that Φeq is an isomorphism that this spectral

sequence collapses on the E1-page: E1 = HF∗
(
ϕ2
)
[[h]] = E∞. Indeed, the fact that

E1 in every bi-degree has the same dimension over F2 as E∞ forces all higher order

differentials to vanish. Alternatively, we can view CF∗eq
(
ϕ2
)

as an ungraded complex

over Λ with h-adic filtration. Then E1 is finite-dimensional over Λ in every degree with

dimΛE
∗
1 = dimΛE

∗
∞, which again implies that the spectral sequence collapses in the

E1-term. With this in mind we can view HF∗
(
ϕ2
)
[[h]] as the graded space associated

with the h-adic filtration on HF∗eq
(
ϕ2
)
.

Remark 3.2.11. It is essential to acknowledge an abuse of terminology in the paragraph

above and in what follows. Strictly speaking, since the h-adic filtration is infinite, to keep

the isomorphism between E∞ and HF∗eq
(
ϕ2
)

we would need to define the E∞-page of the
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spectral sequence as the direct product of individual degree terms rather than the direct

sum. Then E∞ becomes a filtered (rather than graded) module which is isomorphic to

HF∗eq
(
ϕ2
)

as a filtered module, but not to the graded module resulting from the h-adic

filtration of HF∗eq
(
ϕ2
)
. The problem here stems from the difference between the direct

product and the direct sum; e.g., F2[[h]] is the product of its fixed degree terms and not

a graded ring, whereas F2[h] is the direct sum and graded. Below we will ignore this

issue, which is not uncommon in symplectic topology literature, for it is essentially of

terminological nature. Furthermore, the problem can be completely avoided as explained

in the next remark.

Remark 3.2.12. In (3.4), we defined CF∗eq
(
ϕ2
)

as the space of formal power series

with coefficients in CF∗
(
ϕ2
)
. There are, however, other choices of CF∗eq

(
ϕ2
)

although

the difference is purely technical, cf. [Se, Wi20, Wi18]. For instance, by examining the

action/index change one can readily see that for a closed monotone symplectic manifold,

the expansion of deq involves only a finite number of non-zero terms. Thus the equiv-

ariant Floer homology can be defined over F2[h] as CF∗
(
ϕ2
)
[h]. In a similar vein, the

product PS, the quantum Steenrod square QS, and the continuation/PSS maps Φeq and

Φ−1
eq are also polynomial in h. (Note that as a consequence, F is also polynomial in h,

which is a priori non-obvious.) Therefore, in all constructions mentioned above one can

replace formal power series in h by polynomials, avoiding the terminological issue pointed

out in Remark 3.2.11. Furthermore, we utilize the polynomial version CF∗
(
ϕ2
)
[h] in

the proof of Theorem 4.2.1. This difference is essential for our proof as at some point

in the argument we evaluate the elements of CF∗eq
(
ϕ2
)

at h = 1. Finally, we also note
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that one can choose a middle way and replace the space of formal power series by the

tensor product with F2[[h]] over F2, e.g., setting CF∗eq
(
ϕ2
)

= CF∗
(
ϕ2
)
⊗F2 F2[[h]].

We will need the following simple observation:

Lemma 3.2.13. For any Hamiltonian diffeomorphism ϕ, the equivariant continuation

map Φeq induces the ordinary continuation map Φ on the graded vector space E∞ =

HF∗
(
ϕ2
)
[[h]], i.e.,

Φeq = Φ +O(h). (3.11)

Proof. Let f be a C2-small Morse function on (M,ω), unrelated to the pseudo-rotation

ϕ. Set QC∗(M) = CM∗(f) ⊗ Λ where CM∗(f) is the Morse complex of f . The com-

plex QC∗(M)[[h]] has a natural h-adic filtration and the resulting spectral sequence

collapses on the E1-page; for h is not involved in the differential. Furthermore, recall

that HF∗
(
ϕ
)
[[h]] is the E1-page associated with the h-adic filtration of CF∗eq

(
ϕ2
)
. We

claim that, in the obvious notation,

E1(Φeq) = Φ. (3.12)

Then, since both spectral sequences collapse on the E1-page, (3.11) readily follows from

(3.12).

It remains to establish (3.12). Let ψf be the Hamiltonian diffeomorphism

generated by f . Following [Wi18], we write the chain level definitions of Φeq and Φ as

the compositions

QC∗(M)[[h]]
Ψeq−→ CF∗

(
ψ2
f

)
[[h]]

Ceq−→ CF∗
(
ϕ2
)
[[h]] = CF∗eq

(
ϕ2
)
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and

QC∗(M)[[h]]
Ψ−→ CF∗

(
ψ2
f

)
[[h]]

C−→ CF∗
(
ϕ2
)
[[h]].

Here the map Ψ is the PSS map for f or, to be more precise, for 2f . Furthermore, C

is the continuation from the Floer complex of ϕ2 to the Floer complex of ψ2
f for a fixed

(e.g., linear) homotopy between f and the Hamiltonian H generating ϕ. The maps

Ψeq and Ceq are the equivariant counterparts of Ψ and, respectively, C. (Note that the

differential in the Morse complex of f , and hence in the Floer complex of ψ2
f , might be

non-trivial; for M need not admit a perfect Morse function.) By definition (see [Wi18]),

Ψeq = Ψ +O(h) and Ceq = C +O(h), and (3.12) follows.

3.2.4 Enter pseudo-rotations

Assume now that ϕ is a pseudo-rotation or more generally that every 2-periodic

point is a fixed point and that dFl = 0 for ϕ and hence for ϕ2. Then HF∗(ϕ) = CF∗(ϕ)

and HF∗
(
ϕ2
)

= CF∗
(
ϕ2
)
.

Furthermore, from the collapse of the Leray spectral sequence it then follows

inductively that deq = 0 and we have the identifications

F0 : HF∗eq
(
ϕ2
)

= CF∗eq
(
ϕ2
)

= CF∗
(
ϕ2
)
[[h]], (3.13)

which, in contrast with the natural map F , are specific to the case of pseudo-rotations,

but might exist under somewhat less restrictive conditions. Of course, F0 = id, but we

prefer to use a different notation at this point to emphasize the fact that F0 is defined

only under some additional assumptions on ϕ and ϕ2.
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The next important (but simple) ingredient of our proof, which we use to

establish (4.4) below, is the following lemma.

Lemma 3.2.14. We have F = F0 +O(h).

This lemma is an immediate consequence of Lemma 3.2.13 and the identifica-

tions (3.13).

Example 3.2.15. Returning to Example 3.2.10 consider the rotation ϕ of S2 about the

z-axis in an angle θ. Let x̄ and ȳ be the South and North poles respectively, equipped

with trivial cappings. Thus µ(x̄) = −1 and µ(ȳ) = 1. Passing to the second iterate ϕ2,

we still have µ
(
x̄2
)

= −1 and µ
(
x̄2
)

= 1 when θ ∈ (0, π). Then Φeq(1) = x̄2 = Φ(1)

and Φeq($) = ȳ2 = Φ($) and F = id. In general, F = id whenever ϕ is sufficiently

close to id. On the other hand, if θ ∈ (π, 2π) we have µ
(
x̄2
)

= −3 and µ
(
ȳ2
)

= 3. Then

Φeq(1) = q−1ȳ2 + h2x̄2, while Φ(1) = q−1ȳ2, and Φeq($) = qx̄2 = Φ($). (This can be

proved by using the information about QS from Example 3.2.10 along with index/action

analysis and Lemma 3.2.14.) As a consequence, F
(
x̄2
)

= x̄2 and F
(
ȳ2
)

= ȳ2 + h2qx̄2.

We are not aware of any general method of explicitly calculating the map F .
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Chapter 4

Proofs

4.1 Proof of Theorem 2.1.1

For the sake of simplicity, we will assume that all capped periodic orbits have

distinct action: the argument extends to the general case in a straightforward way and

the difference is purely expository. (See also Remark 4.1.1.)

We will argue by contradiction: throughout the proof we assume that QS($)

is undeformed, i.e., QS($) = h2n$; see (3.8) and (3.9). The proof comprises two steps,

and this assumption, which we aim to disprove, is used in both steps.

Write

Φ($) = x̄+ . . . , (4.1)

where the dots stand for the terms with action strictly greater than the action of x̄.

Thus µ(x̄) = n. In the first step we prove the theorem under the additional condition
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that the index of x̄ jumps from x̄ to x̄2, i.e.,

µ
(
x̄2
)
> µ(x̄) = n. (4.2)

This condition might or might not hold for ϕ and in the second step we show

that (4.2) is necessarily satisfied for a sufficiently high iterate of ϕ. This will complete

the proof of the theorem.

Step 1. Thus let us prove the theorem under the additional condition (4.2),

where x̄ is given by (4.1). From the top square in the diagram (3.10) and Proposition

3.2.6, we obtain the following commutative square:

$

QS
��

Φ // x̄+ . . .

PS
��

h2n$
Φeq// hmx̄2 + . . .

In the bottom right corner the dots again stand for higher action terms and, by (3.6)

and (4.2),

m = 3n− µ
(
x̄2
)
< 2n.

This contradicts the fact that Φeq is F2[[h]]-linear.

Step 2. To finish the proof it remains to make sure that (4.2) is satisfied after,

if necessary, replacing ϕ by its iterate.

The condition that µ(x̄) = n guarantees that, by (3.1), µ̂(x̄) > 0 and hence

µ
(
x̄k
)
→∞, and furthermore that the sequence µ

(
x̄k
)

is increasing (but not necessarily

strictly increasing):

µ
(
x̄k
)
↗∞. (4.3)
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There are several ways to show this. For instance, let us adopt the argument

from [GG18b, Sect. 4]; see also [GG18b, Formula (6.1)]. Namely, let P ∈ S̃p(2n) be the

linearized flow along x̄. Since the index sequence µ
(
P k
)

is invariant under iso-spectral

deformations, we can assume without loss of generality that P (1) is semi-simple. Then

P can be expressed as the product of a loop φ and P ∈ S̃p(2n) which decomposes as

a direct sum of elements of S̃p(2) or S̃p(4) of the following three types: short rotations

of R2 (by an angle θ ∈ (−π, π)), positive and complex hyperbolic transformations of

R2 or R4 with zero index, and negative hyperbolic transformations of R2. (A negative

hyperbolic transformation is the counterclockwise rotation in π composed with a positive

hyperbolic transformation with zero index.) Then, using the condition that µ(P ) = n,

we can redistribute the loop part φ among individual terms and write P as
⊕
Pi, where

Pi is either a counterclockwise rotation by θ ∈ (0, 2π) or a counterclockwise negative

hyperbolic transformation. Clearly, each of the sequences µ
(
P ki
)

is increasing, and hence

so is µ
(
P k
)
.

As a consequence of (4.3), there exists r = 2`0 ≥ 1 such that µ
(
x̄k
)

= n for

k ≤ r but µ
(
x̄2r
)
> n.

We claim that

Φ($) = x̄2` + . . . (4.4)

as long as ` ≤ `0, where the dots stand again for the terms of higher action. In particular,

we can replace ϕ by ϕr to guarantee that (4.2) is satisfied.

To prove (4.4), arguing by induction, it is enough to show that (4.1) still holds
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for ϕ2, i.e.,

Φ($) = x̄2 + . . . , (4.5)

provided, of course, that it holds for ϕ and µ
(
x̄2
)

= n = µ(x̄).

To establish (4.5), let us trace the image of $ through the diagram (3.10). We

have

$

QS
��

Φ // x̄+ . . .

PS
��

h2n$

∼=
��

Φeq// h2n
(
x̄2 +R

)
F
��

h2n$
Φ// h2n

(
x̄2 +R′

)
.

We emphasize that in the left column of the diagram, we have used, as in Step 1, the

background assumption that QS($) is undeformed. Next, let us take a closer look at

what R and R′ are.

The remainder R in PS(x̄+ . . .) is a sum of capped 2-periodic orbits of ϕ with

action strictly greater than the action of x̄2 and possibly h-dependent coefficients. The

condition that

PS(x̄+ . . .) = Φeq

(
h2n$

)
= h2nΦeq($)

guarantees that PS(x̄+ . . .) is divisible by h2n. Let us write

R =
∑

z̄j +O(h),

where z̄j are some capped 2-periodic orbits of ϕ with action strictly greater than the

action of x̄2.
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By Lemma 3.2.14, F
(
x̄2
)

= x̄2 +O(h) and

R′ =
∑

z̄j +O(h).

However, Φ is a non-equivariant continuation/PSS map and thus Φ($) ∈ CF∗
(
ϕ2
)
.

Therefore, R′ ∈ CF∗
(
ϕ2
)

since

h2n
(
x̄2 +R′

)
= h2nΦ($).

This proves (4.5) and completes the proof of the theorem.

Remark 4.1.1. Returning to the regularity question (see Remark 3.2.9), note that,

the general case of the theorem can also be reduced to the case considered above where

all periodic orbits of ϕ have distinct action. Indeed, it is clear from the proof that it

suffices to assume that ϕ is a pseudo-rotation up to a certain iteration order r, which

is completely determined by the indices and the mean indices of 1-periodic orbits. Then

the actions can be made distinct by an arbitrarily small perturbation of ϕ keeping it

a pseudo-rotation up to arbitrarily large iteration order. (A somewhat similar type of

perturbation is used, for instance, in [GG17, Sect. 3.2] in the proof of a Conley conjecture

type result.)

4.2 Proof of theorem 2.2.1

Throughout this section, we use the polynomial version CF(ϕ2)[h] of the equiv-

ariant complex CFeq(ϕ
2); see Remark 3.2.12. This is essential for our proof of Theorem

4.2.1 below, since at some point in the argument we evaluate the elements of CFeq(ϕ
2)

at h = 1.
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4.2.1 Floer graphs

Let ϕ be a non-degenerate Hamiltonian diffeomorphism of a closed monotone

symplectic manifold M . Consider the directed graph Γ(ϕ) whose vertices are capped

fixed points of ϕ, and two vertices x̄ and ȳ are connected by an arrow (from x̄ to ȳ) if

and only if µ(ȳ) = µ(x̄) + 1 and there is an odd number of Floer trajectories from x̄ to

ȳ, i.e., 〈dFlx̄, ȳ〉 = 1. The length of an arrow is the difference of actions of ȳ and x̄. We

call Γ(ϕ) the Floer graph of ϕ.

When M is strictly monotone as is always assumed in this thesis, the group Z

acts freely on Γ(ϕ) by simultaneous recapping, preserving the arrow length. Sometimes

it is convenient to consider the reduced Floer graph Γ̃(ϕ) := Γ(ϕ)/Z. The length of an

arrow in Γ̃(ϕ) is still well-defined. Note that, unless M is symplectically aspherical,

both Γ(ϕ) and Γ̃(ϕ) are infinite, but the latter has finitely many arrows. In particular,

if dFl 6= 0, there exists a shortest arrow. Such an arrow might not be unique, although

it is unique for a generic ϕ, but obviously all shortest arrows have the same length.

The equivariant Floer graph Γeq

(
ϕ2
)

of ϕ2 is defined in a similar fashion. (We

are assuming that ϕ2 is non-degenerate, and hence ϕ is also non-degenerate.) Its vertices

are capped two-periodic orbits of ϕ. The vertices x̄ and ȳ are connected by an arrow

if and only if ȳ enters deq(x̄) with non-zero coefficient. In other words, now we do not

require the index difference to be 1, and x̄ and ȳ are connected by an arrow if and only if

x̄ and hmȳ, where m = µ(x̄)−µ(ȳ) + 1, are connected by an odd number of equivariant

Floer trajectories. The length of an arrow is again the difference of actions. As in
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the non-equivariant case, the reduced equivariant Floer graph Γ̃eq

(
ϕ2
)

:= Γ̃eq

(
ϕ2
)
/Z has

only finitely many arrows, and hence the shortest arrows exist.

We note that Γ
(
ϕ2
)

and Γeq

(
ϕ2
)

(and their reduced counterparts) have the

same vertices. Furthermore, since deq = dFl + O(h), every arrow in Γ
(
ϕ2
)

is also an

arrow in Γeq

(
ϕ2
)
, i.e., the equivariant Floer graph is obtained from its non-equivariant

counterpart by adding arrows. Note that in the process the shortest arrow length can

only get shorter or remain the same. Also, observe that there is a natural one-to-one

map from the vertices of Γ̃(ϕ) to the vertices of Γ̃
(
ϕ2
)

sending x̄ to x̄2; likewise for

un-reduced graphs. However, even when ϕ is 2-perfect, this map is not onto unless M

is symplectically aspherical.

The following theorem relates the Floer graphs for ϕ and its second iterate ϕ2.

Theorem 4.2.1. Assume that ϕ is 2-perfect and ϕ2 is non-degenerate. Then x̄ and

ȳ are connected by one of the shortest arrows in Γ(ϕ) if and only if x̄2 and ȳ2 are

connected by one of the shortest arrows in Γeq

(
ϕ2
)
.

This theorem is proved in Section 4.2.4 after we recall in Section 4.2.3 a few

relevant facts about barcodes.

Remark 4.2.2 (The role of an almost complex structure). The Floer graph of ϕ depends

on the choice of an almost complex structure J , and hence should rather be denoted by

Γ(ϕ, J). Likewise, the equivariant Floer graph depends on the parametrized almost com-

plex structure. However, in both cases, the collection of shortest arrows is independent

of this choice. This fact implicitly follows from Theorem 4.2.1 or can be proved directly
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by a continuation argument.

Note also that Floer graphs are stable under small perturbations of ϕ and J .

To be more precise, Γ(ϕ, J) = Γ(ϕ̃, J̃) whenever ϕ̃ is sufficiently close to ϕ and J̃ is

close to J . The same is true in the equivariant setting.

4.2.2 Implications and the proof of Theorem 2.2.1

Theorem 4.2.1 shows that when ϕ is perfect, the shortest arrow (or, to be more

precise, every shortest arrow) persists from ϕ to ϕ2, although in the process it might

move to the equivariant domain. This happens exactly when the difference of indices

changes: µ(ȳ)− µ(x̄) = 1 but µ
(
ȳ2
)
− µ
(
x̄2
)
6= 1. Moreover, in this case, we necessarily

have µ
(
ȳ2
)
−µ
(
x̄2
)
< 1. On the other hand, if the difference of indices remains equal to

one, the orbits continue to be connected by one of the shortest non-equivariant arrows.

Denote by βmin(ϕ) = A(ȳ) − A(x̄) the length of a shortest arrow. As follows

from Proposition 4.2.6, βmin(ϕ) is exactly equal to the shortest bar in the barcode of

ϕ. Since every non-equivariant arrow for ϕ2 is also an equivariant arrow, the shortest

equivariant arrow length βeq

min

(
ϕ2
)

for ϕ2 does not exceed βmin

(
ϕ2
)
, i.e.,

βeq

min

(
ϕ2
)
≤ βmin

(
ϕ2
)
.

In the setting of Theorem 4.2.1,

βeq

min

(
ϕ2
)

= A
(
ȳ2
)
−A

(
x̄2
)

= 2βmin(ϕ).

We conclude that

2βmin

(
ϕ2k
)
≤ βmin

(
ϕ2k+1)
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as long as the iterates of ϕ remain perfect and non-degenerate, and hence

2kβmin(ϕ) ≤ βmin

(
ϕ2k
)
.

In particular, when ϕ is perfect, the longest finite bar β(ϕ) (and even the shortest

bar) in the barcode cannot be bounded from above for the iterates of ϕ. This proves

Theorem 2.2.1.

Remark 4.2.3. An interesting question that arises from Theorem 4.2.1 is if a shortest

arrow could persist in the non-equivariant domain for all iterates ϕ2k , assuming that ϕ

is perfect. As discussed above, this would be the case if and only if µ
(
ȳ2k
)
− µ

(
x̄2k
)

=

1 for all k ∈ N. Using a slightly simplified version of the index divisibility theorem

from [GG18b] one can show that this is impossible when ϕ is replaced by a suitable

iterate ϕm. (This is non-obvious.) Passing to an iterate is apparently essential because

there exist pairs of strongly non-degenerate elements A and B in S̃p(2n) such that

µ
(
A2k

)
− µ

(
B2k

)
= 1 for all k = 0, 1, 2, . . ..

4.2.3 A few words about the shortest bar

In this section we recall a few facts about persistent homology in the context

of Hamiltonian Floer theory. All results discussed here are contained in, e.g., [UZ],

although in some instances implicitly and usually in a much more general setting. A

reader sufficiently familiar with the material can easily skip this section. There are,

however, two points the reader might want to keep in mind. Namely, our emphasis here

is on the shortest bar rather than the longest finite bar (aka the boundary depth) which
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is more frequently used in applications to dynamics. Secondly, our sign conventions are

different from those in [UZ] due to the fact that we are working with Floer cohomology.

Consider the Floer complex C := CF(ϕ) of a non-degenerate Hamiltonian dif-

feomorphism ϕ of a strictly monotone symplectic manifold, equipped with the standard

action filtration. Clearly, C is a finite-dimensional vector space over Λ and the collection

of 1-periodic orbits of ϕ with fixed capping forms a basis of C.

A finite set of vectors ξi ∈ C is said to be orthogonal if for any collection of

coefficients λi ∈ Λ we have

A
(∑

λiξi
)

= minA(λiξi).

(Recall that with our conventions,

A(ξ) := minA(x̄i) when ξ =
∑

x̄i;

see (3.2).) It is not hard to show that an orthogonal set is necessarily linearly indepen-

dent over Λ.

Example 4.2.4. Assume that all capped 1-periodic orbits of ϕ have distinct actions.

Write ξi = x̄i + . . ., where the dots stand for the orbits with action strictly greater than

x̄i. Then it is easy to see that the set ξi is orthogonal if and only if the capped orbits x̄i

are distinct.

Definition 4.2.5. A basis B = {αi, ηj , γj} of C over Λ is said to be a singular decom-

position if

• dFlαi = 0,
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• dFlηj = γj,

• B is orthogonal.

It is shown in [UZ, Sections 2 and 3] that C admits a singular decomposition.

For the sake of brevity we omit the proof of this fact. In what follows we will order the

pairs (ηj , γj) so that

A(γ1)−A(η1) ≤ A(γ2)−A(η2) ≤ . . . . (4.6)

This increasing sequence is usually referred to as the barcode of ϕ (or to be more precise

the collection of finite bars). The maximal entry in the sequence is called the boundary

depth β(ϕ), [Us]. The barcode is independent of the choice of a singular decomposition

(see, e.g., [UZ]), but here we do not use this fact. Instead, we need the following

characterization of the shortest bar βmin = βmin(ϕ):

Proposition 4.2.6 ([UZ]). Set

βmin := A(γ1)−A(η1).

Then

βmin = inf {A(ȳ)−A(x̄) | 〈dFlx̄, ȳ〉 = 1} (4.7)

= inf {A(dFlξ)−A(ξ) | ξ ∈ C, ξ 6= 0} . (4.8)

Here, in the first equality, the infimum is taken over all capped 1-periodic orbits x̄ and

ȳ such that ȳ enters dFlx̄ with non-zero coefficient and, in the second, over all non-zero

ξ ∈ C. In particular, βmin(ϕ) is the shortest arrow length in Γ(ϕ).

51



Note that the infimums in (4.7) and (4.8) are actually attained and thus can

be replaced by minima, and that the proposition can be thought of as an analogue for

C of the Courant-Fischer minimax theorem giving a variational interpretation of the

eigenvalues of a quadratic form. For the sake of completeness we include a proof of

Proposition 4.2.6.

Proof. Let us denote the right-hand sides in (4.7) and (4.7) by β′min and, respectively,

β′′min. We claim that β′min = β′′min. Indeed, setting ξ = x̄, in (4.8), it is easy to see that

β′′min ≤ β′min. On the other hand, writing ξ = x̄1 + x̄2 + . . . in the order of increasing

action and dFlξ =
∑
dFlx̄i = ȳ + . . ., we observe that 〈ȳ, dFlx̄i〉 = 1 for some i. Then

A(dFlξ)−A(ξ) = A(ȳ)−A(x̄1)

≥ A(ȳ)−A(x̄i)

≥ β′min,

and thus β′′min ≥ β′min.

Next, clearly, βmin ≥ β′′min. Therefore, it remains to show that βmin ≤ β′′min.

To this end, let us decompose ξ in the basis B over Λ:

ξ =
∑

λjηj +
∑

λ′jγj +
∑

λ′′i αi.

Then

dFlξ =
∑

λjγj .

By orthogonality,

A(dFlξ) = minA(λjγj) = A(λkγk)
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for some k, and, again by orthogonality,

A(ξ) ≤ minA(λjηj) ≤ A(λkηk).

Therefore,

A(dFlξ)−A(ξ) ≥ A(λkγk)−A(λkηk)

= A(γk)−A(ηk)

≥ A(γ1)−A(η1) = βmin.

As a consequence, βmin ≤ β′′min, which finishes the proof of the proposition.

Remark 4.2.7. In conclusion, we point out that all results in this section are purely al-

gebraic and extend in a straightforward way to any un-graded finite-dimensional complex

over Λ with an “action filtration” having expected properties; see [UZ].

4.2.4 Proof of theorem 4.2.1

We begin by proving the theorem under the additional background assumption

that all actions and action differences for ϕ and ϕ2 are distinct modulo the rationality

constant λ0. Then, in the last step of the proof, we will show how to remove this extra

assumption. Note that in particular this assumption guarantees that the shortest arrow

is unique for Γ(ϕ) and Γeq

(
ϕ2
)
.

Remark 4.2.8. It is worth pointing out that while this background assumption is sat-

isfied C∞-generically, it is not quite innocuous in the context of pseudo-rotations or
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perfect Hamiltonian diffeomorphisms. Indeed, in this case one can expect certain “reso-

nance relations” between actions or actions and mean indices to hold; see [GK, GG09b].

The proof is carried out in three steps.

Step 1: The shortest arrow for ϕ. In this step we simply apply the machinery from

Section 4.2.3 to CF(ϕ). Let B = {αi, ηj , γj} be a singular decomposition for CF(ϕ)

over Λ; see Definition 4.2.5. Due to the background assumption, the inequalities in (4.6)

are strict:

A(γ1)−A(η1) < A(γ2)−A(η2) < . . . . (4.9)

Let us write

γ1 = ȳ∗ + . . . and η1 = x̄∗ + . . . ,

where dots stand for higher action terms, and x̄∗ and ȳ∗ are unique by the background

assumption. Then, by definition,

A(γ1) = A(ȳ∗) and A(η1) = A(x̄∗),

and hence

βmin := A(γ1)−A(η1) = A(ȳ∗)−A(x̄∗).

We claim that

〈dFlx̄∗, ȳ∗〉 = 1. (4.10)

Indeed, 〈 dFlx̄, ȳ∗〉 = 1 for some x̄ entering η1. Then

βmin = A(ȳ∗)−A(x̄∗) ≥ A(ȳ∗)−A(x̄) ≥ βmin.
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It follows that the first inequality is in fact an equality and x̄ = x̄∗ due to the background

assumption.

Therefore, by Proposition 4.2.6 and (4.10), x̄∗ and ȳ∗ are connected by the

shortest arrow in Γ(ϕ).

Step 2: The shortest arrow for ϕ2. In the previous step we have shown that x̄∗ and ȳ∗

are connected by the shortest arrow in CF(ϕ). Our goal now is to prove the following

key fact.

Lemma 4.2.9. The iterated orbits x̄2
∗ and ȳ2

∗ are connected by the shortest arrow in

Γeq

(
ϕ2
)
.

Since under the background assumption the shortest arrows in Γ̃(ϕ) and Γeq

(
ϕ2
)

are unique, this will establish the theorem.

Proof of Lemma 4.2.9. In the notation from Section 3.2, set

α̂i = ℘(αi ⊗ αi),

η̂j = h℘(ηj ⊗ ηj) + ℘(ηj ⊗ γj),

γ̂j = ℘(γj ⊗ γj).

Then, by Seidel’s non-vanishing theorem (Proposition 3.2.6),

η̂1 = hmx̄2
∗ + . . . and γ̂1 = hm

′
ȳ2
∗ + . . .

for some m ≥ 0 and m′ ≥ 0, where the dots again stand for higher action terms.

Since ℘ is a chain map, i.e., ℘ ◦ dZ2 = deq ◦ ℘, we have

deqα̂i = 0
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and

deqη̂j = h℘(γj ⊗ ηj) + h℘(ηj ⊗ γj)

+ ℘(hηj ⊗ γj + hγj ⊗ ηj)

+ ℘(γj ⊗ γj)

= γ̂j .

This indicates that the collection B̂ := {α̂i, η̂j , γ̂j} can be thought of as a

singular decomposition of CFeq

(
ϕ2
)

with the minimal bar given by

A(γ̂1)−A(η̂1) = A
(
ȳ2
∗
)
−A

(
x̄2
∗
)
,

and, arguing similarly to Step 1, we should be able to show that x̄2
∗ and ȳ2

∗ are connected

by the shortest arrow. A minor technical difficulty that arises at this stage is that

CFeq

(
ϕ2
)

does not fit in with the algebraic framework of Section 4.2.3 or [UZ]. Namely,

CFeq

(
ϕ2
)

is not finite-dimensional over Λ; it is finite-dimensional over Λ[h], but the

latter is not a field. We circumvent this difficulty by a trick which essentially amounts

to setting h = 1. (This is the point where our choice of working with polynomials in h

rather than formal power series as in [Se] is essential; cf. Remark 3.2.12.)

Consider the ungraded complex C̃ defined as follows: C̃ := CF
(
ϕ2
)
⊂ CFeq

(
ϕ2
)

as a vector space over Λ with the differential d̃α := deqα|h=1 for α ∈ C̃. Since deq is

h-linear, we have d̃2 = 0. More formally, C̃ is the quotient complex in the short exact

sequence of ungraded complexes

0 −→ CFeq

(
ϕ2
) 1+h−→ CFeq

(
ϕ2
) π−→ C̃ −→ 0
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over Λ, where π is the h = 1 evaluation map.

Remark 4.2.10. This exact sequence, for any action interval, gives rise to the exact

triangle in Floer cohomology relating H(C̃) and HFeq

(
ϕ2
)

via multiplication by 1 + h.

As any map of the form id + O(h), this multiplication map in Floer cohomology is

one-to-one, and thus

H(C̃) ∼= HFeq

(
ϕ2
)
/(1 + h) HFeq

(
ϕ2
)
,

and hence dimF2 H(C̃) = rkF2[h] HFeq

(
ϕ2
)
, for any action interval. For global cohomol-

ogy, H(C̃) ∼= HF
(
ϕ2
)

as ungraded Λ-modules by the continuation argument and Example

3.2.2.

Since, by construction, C̃ is a finite-dimensional vector space over Λ, now the

machinery from [UZ] applies literally; see Remark 4.2.7. In self-explanatory notation,

〈
deqz̄, h

mz̄′
〉
6= 0 where m = µ(z̄)− µ(z̄′) + 1⇐⇒

〈
d̃z̄, z̄′

〉
6= 0

for z̄ and z̄′ in P̄2(ϕ). Furthermore, we can also form the Floer graph for C̃ and this

graph is identical to the equivariant Floer graph Γeq

(
ϕ2
)
.

Claim 4.2.11. The subset B̃ := π(B̂) in C̃ formed by α̃i := π(α̂i) and η̃j := π(η̂j) and

γ̃j := π(γ̂j) is a singular decomposition for C̃.

Putting aside the proof of the claim, let us first show how Lemma 4.2.9 follows

from it. Observe that

A(γ̃j)−A(η̃j) = 2
(
A(γj)−A(ηj)

)
. (4.11)
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Indeed, set

ηj = x̄j + . . . ,

γj = ȳj + . . . ,

where as usual the dots stand for strictly higher action terms. (Thus x̄∗ = x̄1 and

ȳ∗ = ȳ1.) By Seidel’s non-vanishing theorem (Proposition 3.2.6), we have

η̂j = hmj x̄2
j + . . . ,

γ̂j = hm
′
j ȳ2
j + . . .

for some mj ≥ 0 and m′j ≥ 0, and hence

η̃j = x̄2
j + . . . ,

γ̃j = ȳ2
j + . . . .

Therefore,

A(γ̃j)−A(η̃j) = A
(
ȳ2
j

)
−A

(
x̄2
j

)
= 2
(
A(ȳj)−A(x̄j)

)
= 2
(
A(γj)−A(ηj)

)
,

which proves (4.11).

In particular, similarly to (4.9), we have

A(γ̃1)−A(η̃1) < A(γ̃2)−A(η̃2) < . . . .

Therefore,

βmin(C̃) := A(γ̃1)−A(η̃1) = A
(
ȳ2
∗
)
−A

(
x̄2
∗
)
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is the shortest bar for C̃. As in Step 1, we infer that

〈
d̃x̄2
∗, ȳ

2
∗
〉

= 1.

Hence there is an arrow connecting these two orbits in the Floer graph for C̃ and this

is the shortest arrow. The Floer graph for C̃ is defined similarly and in fact identical to

the equivariant Floer graph Γeq

(
ϕ2
)
. Therefore, this arrow is also the shortest arrow in

Γeq

(
ϕ2
)
, completing the proof of Lemma 4.2.9 modulo Claim 4.2.11.

Proof of Claim 4.2.11. Since π is a homomorphism of complexes, we have d̃α̃i = 0 and

d̃η̃j = γ̃j . Therefore, we only need to show that B̃ is an orthogonal basis. For this we do

not need to distinguish between different types of elements of B. Write B = {ξi}, where

ξi = z̄i + . . . with the dots denoting the entries of strictly higher action. Then, by the

definition of B̂ and Seidel’s non-vanishing theorem, B̃ = {ξ̃i} comprises the elements

ξ̃i := π(ξ̂i) = z̄2
i + . . . .

Now, as in Example 4.2.4, the orthogonality for B is equivalent to that the

orbits z̄i are distinct. Similarly, the orthogonality for B̃ is equivalent to that the orbits

z̄2
i are again distinct. It follows that B̃ is orthogonal if (in fact, iff) B is orthogonal

which is a part of its definition. As a consequence, B̃ is linearly independent over Λ.

Finally, since C̃ = CF
(
ϕ2
)

as Λ-modules and ϕ is 2-perfect, we have

dimΛ C̃ = dimΛ CF
(
ϕ2
)

= dimΛ CF(ϕ) = |B| = |B̃|,

and B̃ is a basis.
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This concludes the proof of Lemma 4.2.9.

Step 3: Removing the background assumption. Recall that the Floer graphs Γ(ϕ) and

Γeq

(
ϕ2
)

are stable under small perturbations of ϕ. With this in mind, we can replace ϕ

by a C∞-small perturbation ϕ̃ meeting the background assumption, since the latter is a

C∞-generic condition. More precisely, one can change the action of a single orbit by a

small amount (positive or negative) using a localized C∞-small perturbation ϕ̃. Hence,

given any arrow in the Floer graphs Γ̃(ϕ) and Γ̃eq

(
ϕ2
)
, pick some small ε > 0. Then

one can apply local perturbations at the two ends to shorten its length by 2ε while not

changing the lengths of the remaining arrows more than ε. It follows that every shortest

arrow in the Floer graphs Γ̃(ϕ) and Γ̃eq

(
ϕ2
)

can be perturbed into the unique shortest

arrow. Now, Theorem 4.2.1 for ϕ follows from that theorem for ϕ̃.

Remark 4.2.12 (The Zp-equivariant analogue). This argument extends with only very

minor changes to the pth iterates ϕp, where p is a prime, proving the analogue of The-

orem 4.2.1 for Zp-equivariant cohomology of ϕp over Fp and relying on the results from

[ShZa]; cf. Remark 3.2.7. As a consequence, as in the proof of Theorem 2.2.1, if ϕ is

strongly non-degenerate, β is a priori bounded from above and |P(ϕ)| is greater than the

sum of Betti numbers of M over Q, then there exists a simple p-periodic orbit for every

sufficiently large prime p as is shown in [Sh19a].
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4.2.5 Degenerate case

Perhaps, the simplest way to extend our arguments and, in particular, Theorem

2.2.1 and Corollary 2.2.2 to include some degenerate Hamiltonian diffeomorphisms as

in [Sh19a] is by bypassing Theorem 4.2.1 and using a somewhat less precise argument.

Below we outline the key steps of this generalization, some of which again overlap with

[Sh19a]. The account is deliberately brief. The main new point here is the construction

of the (equivariant) Floer graph in the degenerate case.

Assume that ϕ is 2-perfect and that the second iteration is admissible: −1 is

not an eigenvalue of Dϕx for any x ∈ P1(ϕ). (The latter requirement is satisfied once

ϕ is replaced by its sufficiently high iterate ϕ2k .) Then, as shown in [GG10], for every

x̄ ∈ P̄1(ϕ) we have a canonical isomorphism in local Floer cohomology:

HF(x̄)
∼=−→ HF

(
x̄2
)

(4.12)

up to a shift of grading. By the Smith inequality in local Floer cohomology, which

can be proved by exactly the same argument as in [Se] (see also [ÇG, Sh19a]), we

have HFeq

(
x̄2
) ∼= HF

(
x̄2
)
[h], where, strictly speaking, on the left we have the graded

module associated with the h-adic filtration of HFeq

(
x̄2
)
. (We expect that in this

situation deq = dFl, and hence HFeq

(
x̄2
) ∼= HF

(
x̄2
)
[h] literally, without passing to

graded modules, but we have not been able to prove this.)

For every x̄ ∈ P̄1(ϕ), fix a basis ξi,x̄ in HF(x̄) so that this system of bases is

recapping-invariant. Applying (4.12) to this system, we obtain bases ξ′i,x̄ in HF
(
x̄2
)

with x̄ ∈ P̄1(ϕ), and this system extends to a recapping-invariant system over the entire
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P̄2(ϕ).

We also have a recapping-invariant system of bases in HFeq

(
x̄2
)

arising from

℘(ξi,x̄⊗ξi,x̄) ∈ HFeq

(
x̄2
)
. To be more precise, it is convenient to replace the equivariant

cohomology (local or global) by the homology of the ungraded complex C̃ obtained by

setting h = 1 as in the proof of Theorem 4.2.1. For the sake of brevity, we keep the

notation HFeq for this cohomology suppressing the projection π in the notation. Set

ξeqx̄,i := ℘(ξi,x̄ ⊗ ξi,x̄). We claim that this is a basis in HFeq

(
x̄2
)

which is now just a

vector space over F2. Then, extending, we get a recapping invariant family of bases

over P̄2(ϕ).

To show that {ξeqx̄,i} is indeed a basis, we first recall that, without changing

Dϕx and the local cohomology, ϕ can be deformed near x to the direct product of

degenerate and totally non-degenerate maps; see [GG10, Sect. 4.5]. This essentially

reduces the question to the case, which for the sake of brevity we will focus on, where

x is totally degenerate, i.e., all eigenvalues of Dϕx are equal to 1 and in particular ϕ

can be made C1-close to the identity. Furthermore, recall that HF(x̄) ∼= HF(ϕf ) ∼=

HM(f) by [Gi, Sect. 3.3 and 6], where HM stands for the local Morse cohomology, f

is the generating function of ϕ and ϕf is the germ of the Hamiltonian diffeomorphism

generated by f . These isomorphisms come from continuation maps and there are similar

isomorphisms (equivariant and non-equivariant) for x̄2 and ϕ2f = ϕ2
f , where we can

replace the generating function for ϕ2 by 2f ; see [GG10, Sect. 4.3]. Now, as in Example
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3.2.2 and Remark 4.2.10, we arrive at the continuation map identifications

HFeq

(
x̄2
) ∼= HF

(
x̄2
) ∼= HF(x̄) ∼= H(Yf ), (4.13)

where Yf is a certain topological space (the Conley index) associated with the critical

point x of f . Furthermore, the map α 7→ ℘(α ⊗ α) turns into the Steenrod square Sq

on H(Yf ); see [Wi20]. Thus, with these identifications in mind, ξx̄,i = ξ′x̄,i and

ξeqx̄,i = Sq(ξx̄,i) = ξx̄,i + . . . , (4.14)

where the dots stand for the terms of higher degree in H(Yf ). It follows that the vectors

ξeqx̄,i are linearly independent and, since dimF2 HFeq

(
x̄2
)

= dimF2 HF(x̄) by (4.13), this

system is a basis.

The action filtration spectral sequence in Floer cohomology has E1 =
⊕

x̄ HF(x̄)

and converges to HF(ϕ). With bases fixed, we can canonically collapse this spectral se-

quence into one complex with the same features as the ordinary Floer complex including

the action filtration and cohomology equal to HF(ϕ); cf. [GG19, Sect. 2.1.3 and 2.5].

This data is sufficient to define the Floer graph Γ(ϕ) of ϕ with vertices ξx̄,i. (Note

that the orbits with HF(x̄) = 0 do not contribute to Γ(ϕ) and the graph depends on

the choice of the bases {ξx̄,i}.) It is also worth keeping in mind that even in the non-

degenerate case this graph and the complex might differ from the Floer graph as defined

in Section 4.2 and from the Floer complex. However, they have the same formal prop-

erties as CF(ϕ) and the original graph, and the resulting homology is isomorphic to the

Floer cohomology HF(ϕ); cf. [GG19].

A similar construction applies to ϕ2 in the ordinary and equivariant settings
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and ξ′x̄,i ↔ ξeqx̄,i gives rise to an action-preserving one-to-one correspondence between

the vertices of Γ
(
ϕ2
)

and Γeq

(
ϕ2
)
. The condition that the sum (2.1) with F = F2 is

strictly greater than the sum of Betti numbers guarantees that the graph Γ(ϕ), and

hence Γ
(
ϕ2
)

and Γeq

(
ϕ2
)
, have at least one arrow.

Denote by βmin the length of the shortest arrows in a Floer graph. Our goal

is to show that ϕ cannot be 2k-perfect, where k is sufficiently large, assuming an a

priori upper bound on βmin

(
ϕ2k
)

as in Theorem 2.2.1. (Note that in contrast with the

non-degenerate case the Floer graphs are now sensitive to small perturbations of ϕ and

we usually cannot make the shortest arrow unique without changing the graph unless

dimF2 HF(x) = 1 for all x ∈ P1(ϕ).)

The equivariant pair-of-pants product ℘ extends to the complexes we have

constructed, and Seidel’s non-vanishing theorem takes the form

℘(ξx̄,i ⊗ ξx̄,i) = ξeqx̄,i + . . . , (4.15)

where now the dots stand for terms with action greater than or equal to the action

of ξeqx̄,i, but with the provision that the first term enters the whole sum with non-zero

coefficient. (This is a consequence of (4.14) and Seidel’s non-vanishing theorem applied

to the non-degenerate part in the splitting of ϕ at x.)

Pick one of the shortest arrows, say v, in Γeq

(
ϕ2
)
. After recapping, we can

ensure that the beginning of v has the form ξeqx̄,i. Using (4.15) and the facts that ℘ is a

chain map and v is a shortest arrow, it is not hard to see that ξx̄,i is the beginning of
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an arrow in Γ(ϕ) whose length is at most βeq

min

(
ϕ2
)
/2. Hence,

2βmin(ϕ) ≤ βeq

min

(
ϕ2
)
. (4.16)

(This proves a somewhat weaker version of Theorem 4.2.1: every shortest equivariant

arrow comes from an arrow for ϕ.)

On the other hand,

βeq

min

(
ϕ2
)
≤ βmin

(
ϕ2
)
. (4.17)

Indeed, dimF2 HFI
(
ϕ2
)
≥ rkF2[h] HFIeq

(
ϕ2
)

for any action interval I, as is easy to see

from the h-adic filtration spectral sequence. Applying this to an interval tightly enclos-

ing one of the shortest arrows in Γ
(
ϕ2
)

we obtain (4.17). In fact, we expect that, as in

the non-degenerate case, Γeq

(
ϕ2
)

incorporates all arrows of Γ
(
ϕ2
)

(and, perhaps, more).

This is a stronger statement than (4.17), but (4.17) is sufficient for our purposes.

Combining (4.16) and (4.17), we see that 2βmin(ϕ) ≤ βmin

(
ϕ2
)
. As a conse-

quence, βmin

(
ϕ2k
)
≥ 2kβmin(ϕ) as long as ϕ is 2k-perfect. When βmin

(
ϕ2k
)

is bounded

from above, this is impossible for large k.

We note in conclusion that in the non-degenerate case this proof reduces to an

argument which does not rely on persistence homology and is ultimately simpler and

more direct, although arguably less structured, than our proof of Theorem 2.2.1 via

Theorem 4.2.1.
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4.3 Proof of Theorem 2.3.1

We carry out the proof in three steps. In the first step, we show that if the

sum
∑
µ(x̄2

i ) is non-zero, then the difference di := µ(x̄2
i )− 2µ(x̄i) is constant in xi and

equal to ±2. In the second step, we compute PS(x̄i) under the assumption that di = 2.

Finally in the last step, we rule out the case di = 2 by showing that PS(x̄i) forces the

equivariant continuation/PSS map Φeq to be not polynomial in h; see Remark 3.2.12.

This completes the proof since now the case di = −2 can be ruled out by replacing ϕ

by ϕ−1.

Step 1. Since ϕ is a pseudo-rotation, the total index jump
∑
µ(x̄2

i )−
∑
µ(x̄i)

is divisible by 2N = 6. Hence, since
∑
µ(x̄i) = 0, the sum

∑
di is also divisible by 6.

Then using the bound |di| ≤ n = 2 (see (3.6) or for a more detailed account [ÇGG19,

Sect. 5]), we conclude that di is constant and equal to ±2 unless
∑
µ(x̄2

i ) = 0.

Step 2. We claim that, under the assumption di = 2, PS(x̄i) = x̄2
i . Write

PS(x̄i) = hmi x̄2
i +Ri. It follows from (3.6) that mi = 0. Then Ri is divisible by h, since

all capped periodic orbits of ϕ2 have distinct index. In particular, any capped orbit that

enters Ri should have index and hence action strictly less than x̄2
i ; see [GG18a, Thm.

3.1] and also [GG09a]. On the other hand, by Proposition 3.2.6, the iterated orbit x̄2
i is

the least action term in PS(x̄i). Hence Ri = 0 and PS(x̄i) = x̄2
i .

Step 3. We compute Φeq(α
2) where α is the generator of HQ2(CP2). Note that

QS(1) = 1, QS(α) = α2 + h2α and QS(α2) = qα + h2q1 + h4α2; see [Wi20, Sect. 6].
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We have

Φ−1
eq (PS(x̄3)) = Φ−1

eq (x̄2
3) = qα+ h2q1 + h4α2,

Φ−1
eq (PS(x̄2)) = Φ−1

eq (x̄2
2) = α2 + h2α,

Φ−1
eq (PS(x̄1)) = Φ−1

eq (x̄2
1) = 1

by the top square of the diagram (3.10). Then, by linearity,

Φ−1
eq (h2q−1x̄2

3 + x̄2
2 + h4x̄2

1) = (1 + h6q−1)α2,

which implies that Φeq(α
2) is not polynomial in h; see Remark 3.2.12.
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